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Introduction

In 1821, the french mathematician Pierre
Simon de Laplace wrote, in his Essai
philosofique sur les probabilités:

“We ought then to consider the present state of the
universe as the effect of its previous state and as the
cause of that which is to follow. An intelligence that,
at a given instant, could comprehend all the forces by
which nature is animated and the respective situation
of the beings that make it up, if moreover it were
vast enough to submit these data to analysis, would
encompass in the same formula the movements of
the greatest bodies of the universe and those of the
lightest atoms. For such an intelligence nothing
would be uncertain, and the future, like the past,
would be open to its eyes...”

Pierre Simon de Laplace
Beaumont-en-Auge (Normandia);

March, 23, 1749 - Paris; March, 5, 1827
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Jules Henri Poincaré
(Nancy, Francia, 29 de April, 29 1854 - Paris,
France, 17 de July, 17 1912)

About 120 years ago, Henri Poincaré in
his studies on the stability of the Solar
system discovered that its behaviour

was, in some sense, chaotic, although
the term chaos was still several decades

away of entering the language of
science.
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Edward N. Lorenz “ Deterministic Nonperiodic Flow ”(1963)

We have the equations that govern the
variables that allow the meteorological
prediction: Laws of Fluid Mechanics

Edward Norton Lorenz

(West Haven, Connecticut, May, 23 1917 -

Cambridge, Massachusetts, April, 16 2008)
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Introduction

Edward N. Lorenz “ Deterministic Nonperiodic Flow ”(1963)

We have the equations that govern the
variables that allow the meteorological
prediction: Laws of Fluid Mechanics

We have supercomputers that place us
close to the extensive intelligence hy-
pothesis formulated by Laplace...

...and , nevertheless, the weather is
unpredictable.

Edward Norton Lorenz

(West Haven, Connecticut, May, 23 1917 -

Cambridge, Massachusetts, April, 16 2008)

Juan Pello Garćıa The Lorenz equations



Introduction
Rayleigh-Bénard model

Partial differential equations
Galerkin’s method

Introduction

In the present work we have reproduced the path from the fundamental equa-
tions of Fluid Mechanics (continuity equation, Navier-Stokes equations and the
energy conservation law) to the Lorenz equations. But, furthermore, knowing
the process that led Edward N. Lorenz, in his studies on convective phenomena
at the high layers on the atmosphere, to the discovery, in 1963, of the chaotic
dynamics of a three-dimensional system that bears his name, we can pose new
consistent problems. On the one hand, in the modification of the approximations
made and, on the other hand, in the mathematical study of other more complex
possibilities, such as obtaining new systems of decoupled differential equations,
with a greater number of state variables.
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From now on, we intend to reconstruct the process that guided Lorenz by
laying the foundations for the development of these other approaches.
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Introduction

From now on, we intend to reconstruct the process that guided Lorenz by
laying the foundations for the development of these other approaches.

In addition, in relation with the modification of the approximations made,
we have advanced in the process of obtaining the Lorenz type equations in
the case in which the coefficient of isothermal compressibility (β) is not
null (in the classical context of Lorenz this coefficient was neglected).
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Fundamental Laws of Fluid Dynamics

Law of mass conservation (continuity equation)

∂t̺+∇ · (̺v) = 0 (1)
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Fundamental Laws of Fluid Dynamics

Law of mass conservation (continuity equation)

∂t̺+∇ · (̺v) = 0 (1)

Law of conservation of the momentum (Navier-Stokes equations)

∂t(̺v) +∇(̺v⊗ v) = ∇σ̃ + f (2)
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Fundamental Laws of Fluid Dynamics

Law of mass conservation (continuity equation)

∂t̺+∇ · (̺v) = 0 (1)

Law of conservation of the momentum (Navier-Stokes equations)

∂t(̺v) +∇(̺v⊗ v) = ∇σ̃ + f (2)

Law of conservation of energy (heat equation)

∂tE +∇ · (Ev) = −∇ · q+∇ · (vσ̃) + f · v+ Q (3)
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The Batchelor statement for the Rayleigh-Bénard convection problem

A fluid with kinematic viscosity ν, thermal conductivity dT and volumetric expansion co-
efficient α fills a rectangular cavity bounded by two isolated vertical walls separated by a
distance L and two horizontal walls separated by a height H . If the two horizontal walls
are maintained at different temperatures T1, on the upper side, and T2, on the lower side
(T1 < T2), what is the fluid transfer velocity from one layer to the other?

Simulation of a Rayleigh-Bénard convection fluid

Juan Pello Garćıa The Lorenz equations



Introduction
Rayleigh-Bénard model

Partial differential equations
Galerkin’s method

Rayleigh-Bénard model

To solve this problem it is necessary to make a series of physical hypotheses:

The velocity is a regular function
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The fluid is Newtonian
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To solve this problem it is necessary to make a series of physical hypotheses:

The velocity is a regular function

The fluid is Newtonian

Joule’s Law

Fourier’s Law
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To solve this problem it is necessary to make a series of physical hypotheses:

The velocity is a regular function

The fluid is Newtonian

Joule’s Law

Fourier’s Law

The external forces are gravitational type
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Rayleigh-Bénard model

To solve this problem it is necessary to make a series of physical hypotheses:

The velocity is a regular function

The fluid is Newtonian

Joule’s Law

Fourier’s Law

The external forces are gravitational type

Reaction heat and external heat sources are zero

The approximation of Oberbeck (1879)−Boussinesq (1901)
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The state law

To close the system of equations it is necessary to introduce a state
law, i.e. a relation of the type

̺ = ̺(T , p)
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The Oberbeck-Boussinesq Approach

Linear approximation of the state law by means of its Taylor first order
expansion

̺ = ̺m(1− α(T − Tm) + β(p − pm))
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The Oberbeck-Boussinesq Approach

Linear approximation of the state law by means of its Taylor first order
expansion

̺ = ̺m(1− α(T − Tm) + β(p − pm))

Under the assumptions made in the Boussinesq approximation we can
state that the works of Saltzman (1962) and Lorenz (1963) are reduced to
the case β = 0.
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The Oberbeck-Boussinesq Approach

Linear approximation of the state law by means of its Taylor first order
expansion

̺ = ̺m(1− α(T − Tm) + β(p − pm))

Under the assumptions made in the Boussinesq approximation we can
state that the works of Saltzman (1962) and Lorenz (1963) are reduced to
the case β = 0.

In this paper, we propose to investigate the possible generalization to the
case β ≥ 0.
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PDE’s of vorticity and heat conservation

Proposition

The equations of a convective fluid in a rectangular cavity of height H,
expressed in terms of the stream function, ψ, and of the deviation from the
linear temperature distribution, θ, are, in case where the effects of pressure on
density fluctuations are neglected (i.e. β = 0) the following:

∂t∇2
ψ + ∂xψ∂z∇2

ψ − ∂zψ∂x∇2
ψ − gα∂xθ − ν∇4

ψ = 0

∂tθ − ∂zψ∂xθ + ∂xψ∂zθ −
T2 − T1

H
∂xψ − κ∇2

θ = 0
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Nondimensionalization

Proposition

By means of a variable scaling

x∗ =
x

H

z∗ =
z

H

t∗ =
κ

H2
t

ψ
∗ =

1

κ
ψ

θ
∗ =

gαH3

κν
θ

we obtain the following dimensionless equations (continues...)
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Nondimensionalization

Proposition

(...continuation)

∂t∗∇∗2
ψ

∗ + ∂x∗ψ
∗
∂z∗∇∗2

ψ
∗ − ∂z∗ψ

∗
∂x∗∇∗2

ψ
∗ − σ∂x∗θ

∗ − σ∇∗4
ψ

∗ = 0

∂t∗θ
∗ − ∂z∗ψ

∗
∂x∗θ

∗ + ∂x∗ψ
∗
∂z∗θ

∗ − Ra∂x∗ψ
∗ −∇∗2

θ
∗ = 0

where σ = ν
κ
es Prandtl number and

Ra = gαH3(T2−T1)
κν

is the Rayleigh number.
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Fourier Series

In order to find a solution for the PDEs we write the functions ψ∗ and
θ∗ by their Fourier expansion as follows:

ψ∗(x∗, z∗, t∗) =

∞∑

m=0

∞∑

n=0
[ψmn(t

∗) cos(mπax∗) sin(nπz∗) + ψmn(t
∗) sin(mπax∗) sin(nπz∗)

+ψ
mn

(t∗) cos(mπax∗) cos(nπz∗) + ψ
mn

(t∗) sin(mπax∗) cos(nπz∗)]

(and similarly for θ∗).
Here we have denoted a = H

L
the nondimensional parameter wich we

call scale coeficient
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Lorenz Equations

Theorem

The Fourier coefficients ψ11(t
∗), θ02(t

∗) and θ11(t
∗), which are functions of

the dimensionless time, t∗, verify the following system of ordinary differential
equations:

ψ11

′

(t∗) = −σπ2(a2 + 1)ψ11(t
∗) + σ

a

π(a2 + 1)
θ11(t

∗)

θ11
′(t∗) = πaRaψ11(t

∗)− π
2(a2 + 1)θ11(t

∗) + π
2aψ11(t

∗)θ02(t
∗)

θ02
′(t∗) = −4π2

θ02(t
∗)− 1

2
π
2aψ11(t

∗)θ11(t
∗)
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Generalization of the Lorenz equations (2007)
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Qualitative study of the generalized model

PDE’s of vorticity and heat conservation

Proposition

The equations of a convective fluid in a rectangular cavity of height H,
expressed in terms of the current function, ψ, and the deviation from the linear
temperature distribution, θ, are the followinga :

∂t∇2
ψ + ∂xψ∂z∇2

ψ − ∂zψ∂x∇2
ψ − gα∂xθ − ν∇4

ψ

+βg̺m(∂t∂zψ + ∂xψ∂zzψ − ∂zψ∂xzψ − ν∂z∇2
ψ) = 0

∂tθ − ∂zψ∂xθ + ∂xψ∂zθ −
T2 − T1

H
∂xψ − κ∇2

θ = 0

aThese equations are valid for any β ≥ 0.
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Nondimensionalization β ≥ 0

Proposition

By scaling variables

x∗ =
x

H

z∗ =
z

H

t∗ =
κ

H2
t

ψ
∗ =

1

κ
ψ

θ
∗ =

gαH3

κν
θ

the following dimensionless equations are obtained (continues...)
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Nondimensionalization β ≥ 0

Proposition

(...continuation)

∂t∗∇∗2
ψ

∗ + ∂x∗ψ
∗
∂z∗∇∗2

ψ
∗ − ∂z∗ψ

∗
∂x∗∇∗2

ψ
∗ − σ∂x∗θ

∗ − σ∇∗4
ψ

∗

+ζ(∂t∗∂z∗ψ
∗ + ∂x∗ψ

∗
∂z∗z∗ψ

∗ − ∂z∗ψ
∗
∂x∗z∗ψ

∗ − σ∂z∗(∇∗)2ψ∗) = 0

∂t∗θ
∗ − ∂z∗ψ

∗
∂x∗θ

∗ + ∂x∗ψ
∗
∂z∗θ

∗ − Ra∂x∗ψ
∗ −∇∗2

θ
∗ = 0

in which the parameters are now, those already mentioned in the work of
Lorenz (σ and Ra) and one new additional parameter

ζ = β̺mgH

which is the coefficient of dimensionless compressibility
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Lorenz type equations withβ ≥ 0

Theorem

The Fourier coefficients ψ11(t
∗), θ11(t

∗) , θ02(t
∗) y ψ

11
(t∗), which are

functions of dimensionless time, t∗, verify the following system of ordinary
differential equations:

ψ11

′

(t∗) = −σπ2(a2 + 1)ψ11(t
∗) + σ

aπ(a2 + 1)

π2(a2 + 1)2 + ζ2
θ11(t

∗)

θ11
′(t∗) = πaRaψ11(t

∗)− π
2(a2 + 1)θ11(t

∗) + π
2aψ11(t

∗)θ02(t
∗)

θ02
′(t∗) = −4π2

θ02(t
∗)− 1

2
π
2aψ11(t

∗)θ11(t
∗)

ψ
11

′

(t∗) = −σπ2(a2 + 1)ψ
11
(t∗) + σ

aζ

π2(a2 + 1)2 + ζ2
θ11(t

∗)
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Lorenz type equations withβ ≥ 0

Corollary

By means of an adequate scaling of time and phase space we obtain a new
quadratic system of ordinary differential equations:

X ′(τ ) = −σX (τ ) + σc2Y (τ )

Y ′(τ ) = rX (τ )− Y (τ )− X (τ )Z (τ )

Z ′(τ ) = −bZ (τ ) + X (τ )Y (τ )

U ′(τ ) = σ(1− c2)Y (τ )− σU(τ )

where c = π(a2+1)√
π2(a2+1)2+ζ2

∈ (0, 1].
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Qualitative study of the generalized model

Dynamics of the four-dimensional system

Our work concludes with the demonstration that for any value of the parameter c ∈ (0, 1] the
dynamics obtained is the same as that of the classic Lorenz family modulus rescaling of variables and

parameters.

Orbits of the four-dimensional system for different values of c ∈ (0, 1]
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Juan Pello Garćıa The Lorenz equations



Summary
References

Main contributions

In our work we have been able to restore all the mathematical process that goes
from the Navier-Stokes equations to the Lorenz equations, emphasizing the
physical modeling of the problem and the rigorous interpretation of all the
variables and parameters that appear in the course.
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from the Navier-Stokes equations to the Lorenz equations, emphasizing the
physical modeling of the problem and the rigorous interpretation of all the
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In addition, it has been possible to submerge all the previous model in a more
general one, in which the influence of the pressure in the fluctuations of density
of a fluid in convection has been taken into account.
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Main contributions

In our work we have been able to restore all the mathematical process that goes
from the Navier-Stokes equations to the Lorenz equations, emphasizing the
physical modeling of the problem and the rigorous interpretation of all the
variables and parameters that appear in the course.

In addition, it has been possible to submerge all the previous model in a more
general one, in which the influence of the pressure in the fluctuations of density
of a fluid in convection has been taken into account.

Finally, a qualitative study of the generalized model was carried out, concluding
that the dynamics of the Lorenz equations in relation to Fluid Mechanics is valid
regardless of the degree of influence that the fluid pressure exerts on the density.
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