From Fermat's Last Theorem to some Generalized Fermat Equations

Nuno Freitas

Universitat de Barcelona

January 2012

Nuno Freitas Generalized Fermat Equations

ヘロン 人間 とくほ とくほ とう

3

Notation

- A number field is a finite extension K/\mathbb{Q}
- L is a finite extension of Q₁
- \mathbb{F}_{p^r} is the finite filed of p^r elements.
- *O_k* := Ring of integers of the filed k
- \bar{k} is the algebraic closure of k
- $\overline{\mathbb{Z}}$ ring of integers of $\overline{\mathbb{Q}}$ and $G_{\mathbb{Q}} := \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$
- A Galois Representation is a continuus (to the Krull topology) homomorphism ρ : G_Q → GL₂(L) or ρ̄ : G_Q → GL₂(𝔽_{p^r}).
- K_λ is the localization of K at the prime λ

イロト イポト イヨト イヨト 三日

OBJECTIVE

Show that there are no solutions to equations with form:

(I)
$$x^p + 2^{\alpha} y^p = z^p, \quad \alpha \ge 0$$

(II) $x^5 + y^5 = dz^p$, d = 2, 3

The core of the approach was given by Frey, Hellegouarch, Serre, Ribet, Wiles:

- (1) Construction of an elliptic Frey-Hellegouarch curve E,
- (2*) Modularity results for *p*-adic representations $\rho_{E,p}$, attached to *E*
- (3) Irreducibility of the mod *p* representations $\bar{\rho}_{E,p}$ attached to *E*,
- (4*) Lowering the level results for representations attached to newforms $\rho_{f,p}$
- (5) Contradicting the congruence $\rho_{E,p} \equiv \rho_{f,p} \pmod{\mathfrak{P}}$
- (2)+(4) Serre Conjecture over Q

・ロト ・ 理 ト ・ ヨ ト ・

OBJECTIVE

Show that there are no solutions to equations with form:

(I)
$$x^p + 2^{\alpha} y^p = z^p, \quad \alpha \ge 0$$

(II)
$$x^5 + y^5 = dz^p$$
, $d = 2, 3$

The core of the approach was given by Frey, Hellegouarch, Serre, Ribet, Wiles:

- (1) Construction of an elliptic Frey-Hellegouarch curve E,
- (2*) Modularity results for *p*-adic representations $\rho_{E,p}$, attached to *E*
- (3) Irreducibility of the mod *p* representations $\bar{\rho}_{E,p}$ attached to *E*,
- (4*) Lowering the level results for representations attached to newforms $\rho_{f,p}$
- (5) Contradicting the congruence $\rho_{E,p} \equiv \rho_{f,p} \pmod{\mathfrak{P}}$
- (2)+(4) Serre Conjecture over Q

ヘロア 人間 アメヨア 人口 ア

OBJECTIVE

Show that there are no solutions to equations with form:

(I)
$$x^{p} + 2^{\alpha}y^{p} = z^{p}, \quad \alpha \ge 0$$

(II) $x^{5} + y^{5} = dz^{p}, \quad d = 2, 3$

The core of the approach was given by Frey, Hellegouarch, Serre, Ribet, Wiles:

- (1) Construction of an elliptic Frey-Hellegouarch curve E,
- (2*) Modularity results for *p*-adic representations $\rho_{E,p}$, attached to *E*
 - (3) Irreducibility of the mod p representations \$\bar{\rho}_{E,p}\$ attached to \$E\$,
- (4*) Lowering the level results for representations attached to newforms $\rho_{f,p}$

(5) Contradicting the congruence $\rho_{E,p} \equiv \rho_{f,p} \pmod{\mathfrak{P}}$

(2)+(4) Serre Conjecture over Q

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

OBJECTIVE

Show that there are no solutions to equations with form:

(I)
$$x^{p} + 2^{\alpha}y^{p} = z^{p}, \quad \alpha \ge 0$$

(II) $x^{5} + y^{5} = dz^{p}, \quad d = 2, 3$

The core of the approach was given by Frey, Hellegouarch, Serre, Ribet, Wiles:

- (1) Construction of an elliptic Frey-Hellegouarch curve E,
- (2*) Modularity results for *p*-adic representations $\rho_{E,p}$, attached to *E*
 - (3) Irreducibility of the mod p representations \$\bar{\rho}_{E,p}\$ attached to \$E\$,
- (4*) Lowering the level results for representations attached to newforms $\rho_{f,p}$
 - (5) Contradicting the congruence $\rho_{E,p} \equiv \rho_{f,p} \pmod{\mathfrak{P}}$
- (2)+(4) Serre Conjecture over \mathbb{Q}

・ロト ・ 理 ト ・ ヨ ト ・

Definition

Let *k* be a field and \overline{k} an algebraic closure of *k*. A **Weierstrass** equation over *k* is any cubic equation of the form

$$E: y^2 + a_1y + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

where all $a_i \in k$. If char(k) \neq 2,3 it can be writen

$$y^2 = x^3 + Ax + B$$
, $A, B \in k$

and has discriminat $\Delta(E) = 4A^3 + 27B^2$. If $\Delta(E) \neq 0$ then *E* is **nonsingular** and the set

$$E = \{(x, y) \in \overline{k}^2 \text{ satisfying } E(x, y)\} \cup \{\infty\}$$

is an elliptic curve over k.

э

ヘロト 人間 ト ヘヨト ヘヨト

Theorem

- There is an abelian group structure on the set of points of an elliptic curves.
- (Mordell-Weil) This group is finitely generated when *k* is a number field.

ヘロト ヘアト ヘビト ヘビト

ъ

Mod p Galois Representations attached to E

We denote by $E(\overline{\mathbb{Q}})[n]$ the points of order *n*.

Theorem

- $E(\overline{\mathbb{Q}})[n] \sim \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ (think over \mathbb{C} !)
- There is an action of $G_{\mathbb{Q}}$ on $E(\overline{\mathbb{Q}})[n]$

Let P_1, P_2 be a basis of $E(\overline{\mathbb{Q}})[n]$ and $\sigma \in G_{\mathbb{Q}}$. We can write

$$(\sigma(P_1), \sigma(P_2)) = (P_1, P_2) \begin{bmatrix} a_{\sigma} & b_{\sigma} \\ c_{\sigma} & d_{\sigma} \end{bmatrix}$$

Theorem

The action of $G_{\mathbb{Q}}$ on $E(\overline{\mathbb{Q}})[n]$ defines a representation

$$\bar{
ho}_{E,n}: G_{\mathbb{Q}} \longrightarrow GL_2(\mathbb{Z}/n\mathbb{Z}),$$

with image isomorphic $Gal(\mathbb{Q}(E[n])/\mathbb{Q})$.

Reduction modulo p

Let $k = \mathbb{Q}$ and E/\mathbb{Q} be an elliptic curve. There exists an equivalent model of *E* with integer coefficients such that $|\Delta(E)|$ is minimal. For such a model and a prime *p* we can consider the reduced curve over \mathbb{F}_p

$$\tilde{E}: y^2 + \tilde{a}_1 x y + \tilde{a}_3 y = x^3 + \tilde{a}_2 x^2 + \tilde{a}_4 x + \tilde{a}_6$$

and it can be seen that \tilde{E} has at most one singular point.

Definition (type of reduction)

We say that E

- has good reduction at p if \tilde{E} is an elliptic curve.
- has bad multiplicative reduction at p if *E* admits a double point with two distinct tangents (a node)
- has bad additive reduction at p if *E* admits a double point with only one tangent (a cusp)

The Conductor N_E

"Definition"

The **conductor** N_E of an elliptic curve E over \mathbb{Q} is computed by Tate's algorithm. It is the product $\prod_p p^{f_p}$ over the primes of bad reduction of E and

$$f_{p} = \begin{cases} f_{p} = 1 \text{ if has multiplicative reduction at } p \\ f_{p} = 2 + \delta \geq 2 \text{ if E has additive reduction at } p, \\ f_{p} = 2 \text{ if E has additive reduction at } p \text{ and } p \neq 2, 3. \end{cases}$$

Definition

Let E/\mathbb{Q} be an elliptic curve. We say that *E* is semi-stable if at every prime *p* the reduction of *E* at *p* is good or multiplicative.

Theorem (Mazur)

Let $p \ge 5$ be a prime and E a semi-stable elliptic curve over \mathbb{Q} . Then, the representation $\overline{\rho}_{E,p}$ is irreducible.

The Conductor N_E

"Definition"

The **conductor** N_E of an elliptic curve E over \mathbb{Q} is computed by Tate's algorithm. It is the product $\prod_p p^{f_p}$ over the primes of bad reduction of E and

$$f_p = \begin{cases} f_p = 1 \text{ if has multiplicative reduction at } p \\ f_p = 2 + \delta \ge 2 \text{ if E has additive reduction at } p, \\ f_p = 2 \text{ if E has additive reduction at } p \text{ and } p \ne 2, 3. \end{cases}$$

Definition

Let E/\mathbb{Q} be an elliptic curve. We say that *E* is semi-stable if at every prime *p* the reduction of *E* at *p* is good or multiplicative.

Theorem (Mazur)

Let $p \ge 5$ be a prime and *E* a semi-stable elliptic curve over \mathbb{Q} . Then, the representation $\bar{\rho}_{E,p}$ is irreducible.

I-adic Galois Representations attached to E

We will now attach an *I*-adic representation. Fix a prime *I* and consider the I^n -torsion sequence:

$$E[I] \xleftarrow{[I]} E[I^2] \longleftarrow E[I^3] \longleftarrow \dots$$

taking the inverse limit we have the Tate Module at /

$$T_{I}(E) = \lim_{\stackrel{\leftarrow}{n}} \{E[I^{n}]\} \cong \mathbb{Z}_{I} \oplus \mathbb{Z}_{I}.$$

From the compatibility of the action of $G_{\mathbb{Q}}$ with [I] we have an action on $T_I(E)$. Since $Aut(E[I^n])$ and $GL_2(\mathbb{Z}/I^n\mathbb{Z})$ are isomorphic we also have

$$Aut(T_{I}(E)) \xrightarrow{\sim} GL_{2}(\mathbb{Z}_{I}),$$

hence there is a continuous homomorphism

$\rho_{E,l}: \mathbf{G}_{\mathbb{Q}} \to \mathbf{GL}_2(\mathbb{Z}_l) \subset \mathbf{GL}_2(\mathbb{Q}_l).$

I-adic Galois Representations attached to E

We will now attach an *I*-adic representation. Fix a prime *I* and consider the I^n -torsion sequence:

$$E[I] \xleftarrow{[I]} E[I^2] \longleftarrow E[I^3] \longleftarrow \dots$$

taking the inverse limit we have the Tate Module at /

$$T_{I}(E) = \lim_{\stackrel{\leftarrow}{n}} \{E[I^{n}]\} \cong \mathbb{Z}_{I} \oplus \mathbb{Z}_{I}.$$

From the compatibility of the action of $G_{\mathbb{Q}}$ with [I] we have an action on $T_{I}(E)$. Since $Aut(E[I^{n}])$ and $GL_{2}(\mathbb{Z}/I^{n}\mathbb{Z})$ are isomorphic we also have

$$Aut(T_{l}(E)) \xrightarrow{\sim} GL_{2}(\mathbb{Z}_{l}),$$

hence there is a continuous homomorphism

$$\rho_{E,l}: G_{\mathbb{Q}} \to GL_2(\mathbb{Z}_l) \subset GL_2(\mathbb{Q}_l).$$

Definition

Let *p* be a prime and $\mathfrak{p} \subset \overline{\mathbb{Z}}$ any maximal ideal over *p*. The decomposition and intertia groups at \mathfrak{p} are defined by

•
$$D_{\mathfrak{p}} = \{ \sigma \in G_{\mathbb{Q}} : \mathfrak{p}^{\sigma} = \mathfrak{p} \}$$
 then $\sigma \in D_{\mathfrak{p}}$ acts on $\overline{\mathbb{Z}}/\mathfrak{p} = \overline{\mathbb{F}}_{\rho}$ as $(x + \mathfrak{p})^{\sigma} = x^{\sigma} + \mathfrak{p}$

*I*_p = {σ ∈ *D*_p : *x^σ* ≡ *x* (mod p) for all *x* ∈ Z

 is the kernel of the reduction *D*_p → *G*_{𝔽p}.

An **absolute Frobenius element over** p is any preimage Frob_p $\in D_p$ of the Frobenious automorphism in $G_{\mathbb{F}_p}(x \mapsto x^p)$. Frob_p are **dense** in $G_{\mathbb{Q}}$.

Definition

Let ρ be a Galois representation and let p be a prime. Then ρ is said to be **unramified at** p if the inertia subgroup I_p is contained in Ker(ρ) for any maximal ideal $\mathfrak{p} \subset \overline{\mathbb{Z}}$ lying over p.

・ロット (雪) () () () ()

Definition

Let *p* be a prime and $\mathfrak{p} \subset \overline{\mathbb{Z}}$ any maximal ideal over *p*. The decomposition and intertia groups at \mathfrak{p} are defined by

•
$$D_{\mathfrak{p}} = \{ \sigma \in G_{\mathbb{Q}} : \mathfrak{p}^{\sigma} = \mathfrak{p} \}$$
 then $\sigma \in D_{\mathfrak{p}}$ acts on $\overline{\mathbb{Z}}/\mathfrak{p} = \overline{\mathbb{F}}_{p}$ as $(x + \mathfrak{p})^{\sigma} = x^{\sigma} + \mathfrak{p}$

*I*_p = {σ ∈ *D*_p : *x^σ* ≡ *x* (mod p) for all *x* ∈ Z

 is the kernel of the reduction *D*_p → *G*_{𝔽p}.

An **absolute Frobenius element over** p is any preimage Frob_p $\in D_p$ of the Frobenious automorphism in $G_{\mathbb{F}_p}(x \mapsto x^p)$. Frob_p are **dense** in $G_{\mathbb{Q}}$.

Definition

Let ρ be a Galois representation and let p be a prime. Then ρ is said to be **unramified at** p if the inertia subgroup I_p is contained in Ker(ρ) for any maximal ideal $\mathfrak{p} \subset \overline{\mathbb{Z}}$ lying over p.

ヘロン 人間 とくほ とくほ とう

Galois Representations attached to E

Let $p \nmid N_E$ be a prime of good reduction for *E* and define

$$a_{\rho}(E) = \rho + 1 - \# \tilde{E}(\mathbb{F}_{\rho}),$$

where $\#\tilde{E}(\mathbb{F}_p)$ is the number of points in the reduced curve \tilde{E} .

Theorem

The Galois representation $\rho_{E,l}$ is unramified at every prime $p \nmid IN_E$. For any such p let $\mathfrak{p} \subset \overline{\mathbb{Z}}$ be any maximal ideal over p. Then the characteristic equation of $\rho_{E,l}(Frob_{\mathfrak{p}})$ is

$$x^2-a_p(E)x+p=0.$$

The Galois representation $\rho_{E,l}$ is irreducible.

ヘロト ヘ戸ト ヘヨト ヘヨト

Galois Representations attached to E

Let $p \nmid N_E$ be a prime of good reduction for *E* and define

$$a_{\rho}(E) = \rho + 1 - \# \tilde{E}(\mathbb{F}_{\rho}),$$

where $\#\tilde{E}(\mathbb{F}_p)$ is the number of points in the reduced curve \tilde{E} .

Theorem

The Galois representation $\rho_{E,l}$ is unramified at every prime $p \nmid IN_E$. For any such p let $\mathfrak{p} \subset \overline{\mathbb{Z}}$ be any maximal ideal over p. Then the characteristic equation of $\rho_{E,l}(Frob_{\mathfrak{p}})$ is

$$x^2-a_p(E)x+p=0.$$

The Galois representation $\rho_{E,l}$ is irreducible.

▲ 同 ▶ ▲ 臣 ▶ .

The modular group $SL_2(\mathbb{Z})$ is defined by

$$\mathcal{SL}_2(\mathbb{Z}) = \left\{ \left[egin{array}{c} a & b \ c & d \end{array}
ight] : a, b, c, d \in \mathbb{Z}, ad - bc = 1
ight\}$$

and has the important congruence subgroups

$$\Gamma_0(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \mod N \right\}$$

$$\Gamma_1(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \mod N \right\}$$
where "*" means unspecified. Clearly, $\Gamma_1(N) \subset \Gamma_0(N)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Modular Forms

Let $\Gamma(N) \subset SL_2(\mathbb{Z})$ be a congruence subgroup. An holomorphic function $f : \mathcal{H} \to \mathbb{C}$ is a modular form of weight k with respect to $\Gamma(N)$ if

(1) For all $\tau \in \mathcal{H}$ and $\alpha \in \Gamma(N)$,

$$f(rac{a au+b}{c au+d})=(c au+d)^kf(au)$$

(2) For all $\alpha \in SL_2(\mathbb{Z})$, exists a Fourier expansion

$$(c\tau+d)^{-k}f(rac{a\tau+b}{c\tau+d})=\sum_{n=0}^{\infty}c_nq^{n/N}$$

where $q = e^{2\pi i \tau}$.

If in addition, $c_0 = 0$ in all the above Fourier expansions, then *f* is a said to be a **cusp form**. When $\alpha = Id$ we denote the Fourier coefficients c_n in (2) by $a_n(f)$. Denoted by $S_k(\Gamma(N))$ the set of the cusp forms of weight *k* with respect to $\Gamma(N)$.

Modular Forms

- $S_k(\Gamma(N))$ is a vector space over \mathbb{C} of finite dimension.
- In particular, $S_2(\Gamma_0(2^t)) = \{0\}$ for $t \in \{0, 1, 2, 3, 4\}$ and $S_2(\Gamma_0(32))$ has dimension 1.
- S_k(Γ₁(N)) = ⊕S_k(N, ε), where the sum is over the Dirichlet characters ε of modulus N.
- $f \in S_k(N, \epsilon)$ if

$$f(rac{a au+b}{c au+d})=\epsilon(d)(c au+d)^kf(au)$$

for matrices in $\Gamma_0(N)$

- There are Hecke operators T_n ($n \ge 1$) acting on $S_k(\Gamma(N))$.
- There are cuspforms that are eigenvectos for all *T_n*. In that case *T_n(f) = a_n(f)f*. If *f ∈ S_k(N, ε)* is such a form we say it is an eigenform of level *N* and character *ε*. We say *f* is normalized if *a*₁(*f*) = 1.

Denote by $\mathbb{Q}_f = \mathbb{Q}(\{a_p(f)\})$ the **coefficient field of** *f*.

Theorem

Let $f \in S_k(N, \epsilon)$ be a normalized eigenform with number field \mathbb{Q}_f . Let *I* be a prime. For each maximal ideal λ of $\mathcal{O}_{\mathbb{Q}_f}$ lying over *I* there is an irreducible 2-dimensional Galois representation

$$\rho_{f,\lambda}: G_{\mathbb{Q}} \to GL_2(\mathbb{Q}_{f,\lambda}).$$

This representation is unramified at every prime $p \nmid IN$. For any such p let $\mathfrak{p} \subset \overline{\mathbb{Z}}$ be any maximal ideal lying over p. Then $\rho_{f,\lambda}(Frob_{\mathfrak{p}})$ satisfies the polynomial equation

$$x^2 - a_p(f)x + \epsilon(p)p^{k-1} = 0.$$

・ロン ・聞 と ・ ヨン ・ ヨン・

A representation of $G_{\mathbb{Q}}$ is **odd** if $\rho(c) = -1$, where *c* is the complex conjugation. Let χ_l be the *l*-adic cyclotomic character.

Definition

Let *L* be a finite extension of \mathbb{Q}_l and consider a Galois representation $\rho : G_{\mathbb{Q}} \to GL_2(L)$. Suppose that ρ is irreducible, odd and that det $\rho = \epsilon \chi_l^{k-1}$ where ϵ has finite image. Then ρ is **modular of level** M_f if there exists a newform $f \in S_k(M_f, \epsilon)$ and a prime λ above *l* such that $\mathbb{Q}_{f,\lambda}$ embedds in *L* and such $\rho_{f,\lambda} \sim \rho$.

Modularity Theorem

Let E/\mathbb{Q} be an elliptic curve. *E* is modular of level N_E , i.e. there is a newform $f \in S_2(N_E, \epsilon = 1)$, such that $\rho_{E,l} \sim \rho_{f,l}$ for all *l*. In particular, $a_p(f) = a_p(E)$ for all primes $p \nmid N_E$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A representation of $G_{\mathbb{Q}}$ is **odd** if $\rho(c) = -1$, where *c* is the complex conjugation. Let χ_l be the *l*-adic cyclotomic character.

Definition

Let *L* be a finite extension of \mathbb{Q}_l and consider a Galois representation $\rho : G_{\mathbb{Q}} \to GL_2(L)$. Suppose that ρ is irreducible, odd and that det $\rho = \epsilon \chi_l^{k-1}$ where ϵ has finite image. Then ρ is **modular of level** M_f if there exists a newform $f \in S_k(M_f, \epsilon)$ and a prime λ above *l* such that $\mathbb{Q}_{f,\lambda}$ embedds in *L* and such $\rho_{f,\lambda} \sim \rho$.

Modularity Theorem

Let E/\mathbb{Q} be an elliptic curve. *E* is modular of level N_E , i.e. there is a newform $f \in S_2(N_E, \epsilon = 1)$, such that $\rho_{E,l} \sim \rho_{f,l}$ for all *l*. In particular, $a_p(f) = a_p(E)$ for all primes $p \nmid N_E$.

ヘロト 人間 ト ヘヨト ヘヨト

We are also interested in modularity of mod p representations. For example, those arising from p-torsion points of elliptic curves or abelian varieties.

Definition

An irreducible representation $\bar{\rho} : G_{\mathbb{Q}} \to GL_2(\bar{\mathbb{F}}_p)$ is **modular of type** (N, k, ϵ) if there exists a newform $f \in S_k(N, \epsilon)$ and a maximal ideal $\lambda \subset \mathcal{O}_{\mathbb{Q}_f}$ lying over p such that $\bar{\rho}_{f,\lambda} \sim \bar{\rho}$

Let $\bar{\rho}: G_{\mathbb{Q}} \to GL_2(\bar{\mathbb{F}}_{\rho})$ be odd and irreducible.

- Serre gives recipies compute the N(ρ̄) (Artin conductor), k(ρ̄) and ε(ρ̄).
- There exists the notion of $\bar{\rho}$ being **finite** at a prime *l*.
- If *I* ≠ *p* then *p* being finite at *I* is equivalent to being unramified.

<ロ> <四> <四> <四> <三</td>

We are also interested in modularity of mod p representations. For example, those arising from p-torsion points of elliptic curves or abelian varieties.

Definition

An irreducible representation $\bar{\rho} : G_{\mathbb{Q}} \to GL_2(\bar{\mathbb{F}}_p)$ is **modular of type** (N, k, ϵ) if there exists a newform $f \in S_k(N, \epsilon)$ and a maximal ideal $\lambda \subset \mathcal{O}_{\mathbb{Q}_f}$ lying over p such that $\bar{\rho}_{f,\lambda} \sim \bar{\rho}$

Let $\bar{\rho}: G_{\mathbb{Q}} \to GL_2(\bar{\mathbb{F}}_{\rho})$ be odd and irreducible.

- Serre gives recipies compute the N(ρ̄) (Artin conductor), k(ρ̄) and ε(ρ̄).
- There exists the notion of $\bar{\rho}$ being **finite** at a prime *I*.
- If *I* ≠ *p* then *p̄* being finite at *I* is equivalent to being unramified.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Modularity

- Ex. for *I* = *p*: if *E* is has multiplicative reduction at *p* and *p*|*ν*_{*p*}(Δ) or *E* has good reduction at *p* then *ρ*_{*E*,*p*} is finite at *p*.
- *N*(ρ̄) is divisible precisely by the primes *l* for which ρ̄ is not finite and depends only on ρ̄|*l*_l for those primes.

Level Lowering Theorem

Let $p \geq 3$ be a prime. Let $\bar{\rho} : G_{\mathbb{Q}} \to GL_2(\mathbb{F}_{p^r})$ be irreducible over $\bar{\mathbb{F}}_{\rho}$ and modular of type (N, 2, 1). If $\bar{\rho}$ is finite at p then it is modular of type $(N(\bar{\rho}), 2, 1)$.

Serre Conjecture (Khare, Wintenberger)

Let $\bar{\rho} : G_{\mathbb{Q}} \to GL_2(\bar{\mathbb{F}}_{\rho})$ be odd and irreducible. The $\bar{\rho}$ is modular of type $(N(\bar{\rho}), k(\rho), \epsilon(\rho))$

イロン 不良 とくほう 不良 とうほ

Modularity

- Ex. for *I* = *p*: if *E* is has multiplicative reduction at *p* and *p*|*ν*_{*p*}(Δ) or *E* has good reduction at *p* then *ρ*_{*E*,*p*} is finite at *p*.
- *N*(ρ̄) is divisible precisely by the primes *l* for which ρ̄ is not finite and depends only on ρ̄|*l*_l for those primes.

Level Lowering Theorem

Let $p \geq 3$ be a prime. Let $\bar{\rho} : G_{\mathbb{Q}} \to GL_2(\mathbb{F}_{p^r})$ be irreducible over $\bar{\mathbb{F}}_{\rho}$ and modular of type (N, 2, 1). If $\bar{\rho}$ is finite at p then it is modular of type $(N(\bar{\rho}), 2, 1)$.

Serre Conjecture (Khare, Wintenberger)

Let $\bar{\rho} : G_{\mathbb{Q}} \to GL_2(\bar{\mathbb{F}}_{\rho})$ be odd and irreducible. The $\bar{\rho}$ is modular of type $(N(\bar{\rho}), k(\rho), \epsilon(\rho))$

ヘロン 人間 とくほ とくほ とう

We will study the solutions of the equation

$$x^{\rho}+2^{\alpha}y^{\rho}+z^{\rho}=0$$

in the following order:

- $\alpha = 0$ (Fermat's Last Theorem)
- α > 1
- α = 1

But first we need to introduce the Frey-Hellegouarch Curves!

通 とう ほうとう ほうとう

Definition (ABC curve)

Let *A*, *B*, *C* be non-zero coprime integers such that A + B + C = 0 and define the elliptic curve over \mathbb{Q} given by

$$E_{A,B,C}: \quad y^2 = x(x-A)(x+B)$$

that has discriminant (not always minimal) of the form $\Delta = 2^4 (ABC)^2$.

Theorem

When $A \equiv -1 \mod 4$ and $B \equiv 0 \mod 32$, then $E_{A,B,C}$ is semi-stable and its conductor is rad(ABC), the product of the primes dividing *ABC*.

ヘロン 人間 とくほ とくほ とう

ъ

Definition (ABC curve)

Let *A*, *B*, *C* be non-zero coprime integers such that A + B + C = 0 and define the elliptic curve over \mathbb{Q} given by

$$E_{A,B,C}: \quad y^2 = x(x-A)(x+B)$$

that has discriminant (not always minimal) of the form $\Delta = 2^4 (ABC)^2$.

Theorem

When $A \equiv -1 \mod 4$ and $B \equiv 0 \mod 32$, then $E_{A,B,C}$ is semi-stable and its conductor is rad(ABC), the product of the primes dividing *ABC*.

ヘロト ヘアト ヘビト ヘビト

We need to understand the ramification of $\bar{\rho}_{E,p}$.

Theorem (Helllegouarch)

Let C/\mathbb{Q} be an elliptic curve and $I \neq 2, p$. If $I \mid N_C$ is of multiplicative reduction and $p|\nu_l(\Delta(C))$ then $\bar{\rho}_{E,p}$ is unramified at *I*.

Néron-Ogg-Shafarevich Criterium

Let C/\mathbb{Q} be an elliptic curve. *C* has good reduction at *I* if and only if $\rho_{C,p}$ is unramified at *I* for some prime $p \neq I$ if and only if $\rho_{C,p}$ is unramified at *I* for all primes $p \neq I$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

$\alpha = \mathbf{0}$

Suppose (a, b, c) is a **non-trivial** $(abc \neq 0)$ **primitive** (i.e. gcd(a, b, c) = 1) solution of $x^{p} + y^{p} = z^{p}$ and let

$$A = a^{p}$$
 $B = b^{p}$ $C = c^{p}$.

Without loss of generality we can suppose that $a \equiv -1 \pmod{4}$ and *b* to be even.

Corollary

Let $E = E_{a^{\rho}, b^{\rho}, c^{\rho}}$. For $p \ge 5$, the representation $\bar{\rho}_{E, p}$ is unramified outside 2p.

Proof: Let $l \neq 2, p$.

•
$$\Delta(E) = 2^4 (ABC)^2 = 2^4 (abc)^{2p}$$

- If I ∤ abc ⇒ I ∤ Δ ⇒ E has good reduction at I ⇒ ρ_{E,p} is unramified at I by N-O-S ⇒ ρ_{E,p} also is.
- *p* ≥ 5 ⇒ *B* ≡ 0 (mod 32) then *E* is semistable. If *I* | *abc* then by Hellgouarch theorem p
 _{*E*,p} is not ramified at *I*.

Fermat-Wiles Theorem

Let $p \ge 5$ be a prime. There are no non-trivial primitive solutions of $x^{p} + y^{p} + z^{p} = 0$.

Proof: Suppose that (a, b, c) is a non-trivial primitive solution. Recall $E = E_{a^{\rho}, b^{\rho}, c^{\rho}}$ is semi-stable with $\Delta = 2^{4} (abc)^{2\rho}$.

- Modularity theorem (semi-stable case) ⇒ ρ_{E,p} is modular of level N_E ⇒ ρ_{E,p} is modular of level N_E.
- $\bar{\rho}_{E,p}$ is irreducible by Mazur theorem.
- $\bar{\rho}_{E,p}$ is unramified outside 2p
- $p|\nu_p(\Delta)$ then $\bar{\rho}_{E,p}$ is finite at $p \Rightarrow N(\bar{\rho}_{E,p}) = 2$.
- We can take N_E to be $N(\bar{\rho}_{E,p})$ by the LLT.
- $S_2(\Gamma_0(2)) = \{0\} \Rightarrow \bar{\rho}_{E,\rho}$ is not modular, contradiction!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Fermat-Wiles Theorem

Let $p \ge 5$ be a prime. There are no non-trivial primitive solutions of $x^{p} + y^{p} + z^{p} = 0$.

Proof: Suppose that (a, b, c) is a non-trivial primitive solution. Recall $E = E_{a^{p},b^{p},c^{p}}$ is semi-stable with $\Delta = 2^{4}(abc)^{2p}$.

- Modularity theorem (semi-stable case) ⇒ ρ_{E,p} is modular of level N_E ⇒ ρ_{E,p} is modular of level N_E.
- $\bar{\rho}_{E,p}$ is irreducible by Mazur theorem.
- $\bar{\rho}_{E,p}$ is unramified outside 2p
- $p|\nu_p(\Delta)$ then $\bar{\rho}_{E,p}$ is finite at $p \Rightarrow N(\bar{\rho}_{E,p}) = 2$.
- We can take N_E to be $N(\bar{\rho}_{E,\rho})$ by the LLT.
- S₂(Γ₀(2)) = {0} ⇒ ρ
 [¯]_{E,p} is not modular, contradiction!

<ロ> (四) (四) (三) (三) (三) (三)

$$\alpha \geq 1$$

$$a^{p}+2^{lpha}b^{p}+c^{p}=0,$$
 $1\leqlpha\leq p-1$

• Let (*a*, *b*, *c*) be non-trivial and primitive solution

- Observe that for $\alpha = 1$ there exist the solution (-1, 1, -1)!
- Put $A = a^p$, $B = 2^{\alpha}b^p$ and $C = c^p$

From Tate's algorith we have:

•
$$E = E_{A,B,C}$$
: $y^2 = x(x - A)(x + B)$ is semistable for $l \neq 2$.

- $N_E = 2^t rad'(ABC)$ with $t \in \{0, 1, 3, 5\}$
- 4|*B* if and only if *t* ≤ 3
- t = 5 if and only if ord₂(B) = 1

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

Theorem

 $\alpha > 1$

Let $p \ge 5$ be a prime and $\alpha > 1$. The equation $x^{p} + 2^{\alpha}y^{p} + z^{p} = 0$ has no non-trivial primitive solutions.

Proof: Recall that $N_E = 2^t rad'(ABC)$ and $\Delta = 2^s (abc)^{2p}$

- Modularity theorem ⇒ ρ_{E,p} is modular of level N_E ⇒ ρ̄_{E,p} is modular of level N_E.
- Suppose $\bar{\rho}_{E,p}$ irreducible for $p \ge 5$ (Mazur do not apply!)
- $\bar{\rho}_{E,p}$ unramified outside 2p
- $\bar{\rho}_{E,\rho}$ is finite at $\rho \Rightarrow N(\bar{\rho}_{E,\rho}) = 2^t$.
- We can take N_E to be $N(\bar{\rho}_{E,\rho})$ by LLT
- $S_2(\Gamma_0(2^t)) = \{0\}$ for $t \in \{0, 1, 2, 3, 4\}$ and $S_2(\Gamma_0(32))$ has dimension 1.
- $N(\bar{\rho}_{E,\rho}) = 2^t \Rightarrow t = 5 \Rightarrow ord_2(B) = ord_2(2^{\alpha}b^{\rho}) = 1$, contradiction with $\alpha > 1$ or *b* even

Theorem

The representation $\bar{\rho}_{E,p}$ is irreducible for $p \ge 5$.

Proof: Recall $N_E = 2^t rad'(ABC)$ with $t \in \{0, 1, 3, 5\}$

- Suppose *E* semistable (*t* = 0, 1). Follows from Mazur theorem.
- *E* not semistable \Rightarrow the 2-part of N_E is $2^{2+\delta} \Rightarrow \delta = 1, 3$
- Suppose $\bar{\rho}^{ss}|I_2 = \epsilon_1 \oplus \epsilon_2$ is reducible
- $\delta = \operatorname{cond}(\epsilon_1) + \operatorname{cond}(\epsilon_2)$
- det $\bar{\rho} = \bar{\chi}_{\rho} = \epsilon_1 \epsilon_2$ is unramified at $2 \Rightarrow \epsilon_2 = \epsilon_1^{-1}$
- Then $\delta = 2 \operatorname{cond}(\epsilon_1)$ is even, contradiction.
- Thus $\bar{\rho}|I_2$ is irreducible $\Rightarrow \bar{\rho}$ irreducible.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Observe that $E_0 = E_{(-1,1,-1)}$ by Modularity and LLT must correspondo to the eigenform in $S_2(\Gamma_0(32))$. The same is true for any other $E_{(a,b,c)}$.

Proposition

If $p \equiv 1 \mod 4$, then the image of $\bar{\rho}_{E_0,p}$ is contained in the normalizer of a Cartan split subgroup of $GL_2(\mathbb{F}_p)$.

Mazur-Momose Theorem

Let $p \ge 17$ and C/\mathbb{Q} be an elliptic curve. If the image of $\bar{\rho}_{C,p}$ is contained in the normalizer of a Cartan split subgroup of $GL_2(\mathbb{F}_p)$ then *C* can not have multiplicative reduction at primes primes $l \ne 2$.

ヘロン 人間 とくほ とくほ とう

Theorem

Let $p \ge 17$ and $p \equiv 1 \mod 4$. Let (a, b, c) be non-trivial primitive solution of $x^p + 2y^p + z^p = 0$. Then (a, b, c) = (-1, 1, -1).

Proof:

- We can suppose that *a*, *b*, *c* are all odd.
- N_E = 2^trad'(ABC) ⇒ E has multiplicative reduction at all odd primes dividing *abc*.
- Since p ≡ 1 mod 4 and p
 _{E,p} ≡ p
 _{E0,p} by the proposition p
 _{E,p} is under Mazur-Momose hypothesis.
- Then by Mazur-Momose *E* has no primes of multiplicative reduction hence $abc = \pm 1$
- Thus, the only normalized solution is (-1,1,-1).

<ロ> <四> <四> <四> <三</td>

The equation $x^5 + y^5 = dz^p$

Now we proceed to the generalized equation!

Theorem (Billerey and Billerey, Dieulefait)

Let $d = 2^{\alpha}3^{\beta}5^{\gamma}$ where $\alpha \ge 2$, $\beta, \gamma, \ge 0$, or d = 7, 13. Then, for p > 19 the equation $x^5 + y^5 = dz^p$ has no non-trivial primitive solution.

Let γ be an integer divisible only by primes $l \not\equiv 1 \pmod{5}$.

Theorem (Dieulefait, F)

For any p > 13 such that $p \equiv 1 \mod 4$ and $p \equiv \pm 1 \mod 5$, the equation $x^5 + y^5 = 2\gamma z^p$ has no non-trivial primitive solutions.

Theorem (Dieulefait, F)

For any p > 73 such that $p \equiv 1 \mod 4$, the equation $x^5 + y^5 = 3\gamma z^p$ has no non-trivial primitive solutions.

ヘロア 人間 アメヨア 人口 ア

The equation $x^5 + y^5 = dz^p$

Now we proceed to the generalized equation!

Theorem (Billerey and Billerey, Dieulefait)

Let $d = 2^{\alpha}3^{\beta}5^{\gamma}$ where $\alpha \ge 2$, β , γ , ≥ 0 , or d = 7, 13. Then, for p > 19 the equation $x^5 + y^5 = dz^p$ has no non-trivial primitive solution.

Let γ be an integer divisible only by primes $l \neq 1 \pmod{5}$.

Theorem (Dieulefait, F)

For any p > 13 such that $p \equiv 1 \mod 4$ and $p \equiv \pm 1 \mod 5$, the equation $x^5 + y^5 = 2\gamma z^p$ has no non-trivial primitive solutions.

Theorem (Dieulefait, F)

For any p > 73 such that $p \equiv 1 \mod 4$, the equation $x^5 + y^5 = 3\gamma z^p$ has no non-trivial primitive solutions.

・ロット (雪) () () () ()

The equation $x^5 + y^5 = dz^p$

Now we proceed to the generalized equation!

Theorem (Billerey and Billerey, Dieulefait)

Let $d = 2^{\alpha}3^{\beta}5^{\gamma}$ where $\alpha \ge 2$, β , γ , ≥ 0 , or d = 7, 13. Then, for p > 19 the equation $x^5 + y^5 = dz^p$ has no non-trivial primitive solution.

Let γ be an integer divisible only by primes $I \not\equiv 1 \pmod{5}$.

Theorem (Dieulefait, F)

For any p > 13 such that $p \equiv 1 \mod 4$ and $p \equiv \pm 1 \mod 5$, the equation $x^5 + y^5 = 2\gamma z^p$ has no non-trivial primitive solutions.

Theorem (Dieulefait, F)

For any p > 73 such that $p \equiv 1 \mod 4$, the equation $x^5 + y^5 = 3\gamma z^p$ has no non-trivial primitive solutions.

・ロト ・ 理 ト ・ ヨ ト ・

Let (a, b, c) be a primitive solution to $x^5 + y^5 = d\gamma z^p$. From

Key factorization:

$$x^{5} + y^{5} = (x + y)(x^{4} - x^{3}y + x^{2}y^{2} - xy^{3} + y^{4}) = (x + y)\phi(x, y)$$

can be seen that

We need to prove that $\phi(x, y) = rz^p$ where r = 1, 5 has no non-trivial primitive solutions if $d \mid a + b$.

Observe that over $\mathbb{Q}(\sqrt{5})$

•
$$\phi(x, y) = \phi_1(x, y)\phi_2(x, y)$$
, where
• $\phi_1(x, y) = x^2 + \omega xy + y^2$ and $\phi_2(x, y) = x^2 + \bar{\omega}xy + y^2$, with
• $\omega = \frac{-1 + \sqrt{5}}{2}$, $\bar{\omega} = \frac{-1 - \sqrt{5}}{2}$

ヘロン ヘアン ヘビン ヘビン

Let (a, b, c) be a primitive solution of $\phi(x, y) = rz^{p}$.

Definition (Frey-curve)

Consider over $\mathbb{Q}(\sqrt{5})$ the curve given by

$$\mathsf{E}_{(a,b)}: y^2 = x^3 + 2(a+b)x^2 - \bar{\omega}\phi_1(a,b)x,$$

with $\Delta(E) = 2^6 \bar{\omega} \phi \phi_1$, where

- There are Galois representations $\rho_{E,l}$ and $\bar{\rho}_{E,l}$ of $G_{\mathbb{Q}}(\sqrt{5})$
- We need to extend them to G_Q and compute (N(ρ̄), k(ρ̄), ε(ρ̄)) to apply Serre conjecture

<ロ> (四) (四) (三) (三) (三)

From Serre conjecture there is a newform *f* of type $(M, 2, \bar{\epsilon})$ with M = 1600, 800, 400 or 100 and a prime \mathfrak{P} in \mathbb{Q}_f above *p* such that $\bar{\rho} \equiv \bar{\rho}_{f,\mathfrak{P}} \pmod{\mathfrak{P}}$

- Observe that $\mathbb{Q}(i) = \mathbb{Q}(\overline{\epsilon}) \subseteq \mathbb{Q}_f$ and define the sets:
- S1: Newforms with CM (Complex Multiplication),
- S2: Newforms without CM and field of coefficients strictly containing $\mathbb{Q}(i)$,
- S3: Newforms without CM and field of coefficients Q(i)

イロト イポト イヨト イヨト 三日

From Serre conjecture there is a newform *f* of type $(M, 2, \bar{\epsilon})$ with M = 1600, 800, 400 or 100 and a prime \mathfrak{P} in \mathbb{Q}_f above *p* such that $\bar{\rho} \equiv \bar{\rho}_{f,\mathfrak{P}} \pmod{\mathfrak{P}}$

Observe that $\mathbb{Q}(i) = \mathbb{Q}(\bar{\epsilon}) \subseteq \mathbb{Q}_f$ and define the sets:

- S1: Newforms with CM (Complex Multiplication),
- S2: Newforms without CM and field of coefficients strictly containing $\mathbb{Q}(i)$,
- S3: Newforms without CM and field of coefficients $\mathbb{Q}(i)$

イロト イポト イヨト イヨト 三日