From Fermat's Last Theorem to some Generalized Fermat Equations

Nuno Freitas

Universitat de Barcelona
January 2012

Notation

- A number field is a finite extension K / \mathbb{Q}
- L is a finite extension of \mathbb{Q}_{1}
- $\mathbb{F}_{p^{r}}$ is the finite filed of p^{r} elements.
- \mathcal{O}_{k} := Ring of integers of the filed k
- \bar{k} is the algebraic closure of k
- $\overline{\mathbb{Z}}$ ring of integers of $\overline{\mathbb{Q}}$ and $G_{\mathbb{Q}}:=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$
- A Galois Representation is a continous (to the Krull topology) homomorphism $\rho: G_{\mathbb{Q}} \rightarrow G L_{2}(L)$ or $\bar{\rho}: G_{\mathbb{Q}} \rightarrow G L_{2}\left(\mathbb{F}_{p^{r}}\right)$.
- K_{λ} is the localization of K at the prime λ

The Modular Approach:

OBJECTIVE

Show that there are no solutions to equations with form:
(I) $x^{p}+2^{\alpha} y^{p}=z^{p}, \quad \alpha \geq 0$

$d=2,3$
The core of the approach was given by Frey, Hellegouarch, Serre, Ribet, Wiles:
(1) Construction of an elliptic Frey-Hellegouarch curve E,
(2*) Modularity results for p-adic representations $\rho_{E, p}$, attached to E
(3) Irreducibility of the mod p representations $\bar{\rho}_{E, p}$ attached to E,
(4*) Lowering the level results for representations attached to newforms $\rho_{f, p}$
(5) Contradicting the congruence $\rho_{E, p} \equiv \rho_{f, p}(\bmod \mathfrak{P})$

The Modular Approach:

OBJECTIVE

Show that there are no solutions to equations with form:
(I) $x^{p}+2^{\alpha} y^{p}=z^{p}, \quad \alpha \geq 0$
(II) $x^{5}+y^{5}=d z^{p}, \quad d=2,3$

The core of the approach was given by Frey, Hellegouarch, Serre, Ribet, Wiles:
(1) Construction of an elliptic Frey-Hellegouarch curve E,
(2*) Modularity results for p-adic representations $\rho_{\text {E,p, }}$, attached to E
(3) Irreducibility of the mod p representations $\bar{\rho}_{E, p}$ attached to E,
(4*) Lowering the level results for representations attached to newforms $\rho_{f, p}$
(5) Contradicting the congruence $\rho_{E, p} \equiv \rho_{f, p}(\bmod \mathfrak{P})$

The Modular Approach:

OBJECTIVE

Show that there are no solutions to equations with form:
(I) $x^{p}+2^{\alpha} y^{p}=z^{p}, \quad \alpha \geq 0$
(II) $x^{5}+y^{5}=d z^{p}, \quad d=2,3$

The core of the approach was given by Frey, Hellegouarch, Serre, Ribet, Wiles:
(1) Construction of an elliptic Frey-Hellegouarch curve E,
(2*) Modularity results for p-adic representations $\rho_{E, p}$, attached to E
(3) Irreducibility of the mod p representations $\bar{\rho}_{E, p}$ attached to E,
(4*) Lowering the level results for representations attached to newforms $\rho_{f, p}$
(5) Contradicting the congruence $\rho_{E, p} \equiv \rho_{f, p}(\bmod \mathfrak{P})$

The Modular Approach:

OBJECTIVE

Show that there are no solutions to equations with form:
(I) $x^{p}+2^{\alpha} y^{p}=z^{p}, \quad \alpha \geq 0$
(II) $x^{5}+y^{5}=d z^{p}, \quad d=2,3$

The core of the approach was given by Frey, Hellegouarch, Serre, Ribet, Wiles:
(1) Construction of an elliptic Frey-Hellegouarch curve E,
(2*) Modularity results for p-adic representations $\rho_{E, p}$, attached to E
(3) Irreducibility of the mod p representations $\bar{\rho}_{E, p}$ attached to E,
(4*) Lowering the level results for representations attached to newforms $\rho_{f, p}$
(5) Contradicting the congruence $\rho_{E, p} \equiv \rho_{f, p}(\bmod \mathfrak{P})$
(2)+(4) Serre Conjecture over \mathbb{Q}

Elliptic Curves

Definition

Let k be a field and \bar{k} an algebraic closure of k. A Weierstrass equation over k is any cubic equation of the form

$$
E: y^{2}+a_{1} y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where all $a_{i} \in k$. If $\operatorname{char}(k) \neq 2,3$ it can be writen

$$
y^{2}=x^{3}+A x+B, \quad A, B \in k
$$

and has discriminat $\Delta(E)=4 A^{3}+27 B^{2}$. If $\Delta(E) \neq 0$ then E is nonsingular and the set

$$
E=\left\{(x, y) \in \bar{k}^{2} \text { satisfying } E(x, y)\right\} \cup\{\infty\}
$$

is an elliptic curve over k.

The Group Law

Theorem

- There is an abelian group structure on the set of points of an elliptic curves.
- (Mordell-Weil) This group is finitely generated when k is a number field.

$P+Q+R=0$

$P+Q+Q=0$

$P+Q+0=0$

$P+P+0=0$

Mod p Galois Representations attached to E

We denote by $E(\overline{\mathbb{Q}})[n]$ the points of order n.

Theorem

- $E(\overline{\mathbb{Q}})[n] \sim \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ (think over \mathbb{C} !)
- There is an action of $G_{\mathbb{Q}}$ on $E(\overline{\mathbb{Q}})[n]$

Let P_{1}, P_{2} be a basis of $E(\overline{\mathbb{Q}})[n]$ and $\sigma \in G_{\mathbb{Q}}$. We can write

$$
\left(\sigma\left(P_{1}\right), \sigma\left(P_{2}\right)\right)=\left(P_{1}, P_{2}\right)\left[\begin{array}{ll}
a_{\sigma} & b_{\sigma} \\
c_{\sigma} & d_{\sigma}
\end{array}\right]
$$

Theorem

The action of $G_{\mathbb{Q}}$ on $E(\overline{\mathbb{Q}})[n]$ defines a representation

$$
\bar{\rho}_{E, n}: G_{\mathbb{Q}} \longrightarrow G L_{2}(\mathbb{Z} / n \mathbb{Z})
$$

with image isomorphic $\operatorname{Gal}(\mathbb{Q}(E[n]) / \mathbb{Q})$.

Reduction modulo p

Let $k=\mathbb{Q}$ and E / \mathbb{Q} be an elliptic curve. There exists an equivalent model of E with integer coefficients such that $|\Delta(E)|$ is minimal. For such a model and a prime p we can consider the reduced curve over \mathbb{F}_{p}

$$
\tilde{E}: y^{2}+\tilde{a}_{1} x y+\tilde{a}_{3} y=x^{3}+\tilde{a}_{2} x^{2}+\tilde{a}_{4} x+\tilde{a}_{6}
$$

and it can be seen that \tilde{E} has at most one singular point.

Definition (type of reduction)

We say that E

- has good reduction at p if \tilde{E} is an elliptic curve.
- has bad multiplicative reduction at p if \tilde{E} admits a double point with two distinct tangents (a node)
- has bad additive reduction at p if \tilde{E} admits a double point with only one tangent (a cusp)

The Conductor N_{E}

"Definition"

The conductor N_{E} of an elliptic curve E over \mathbb{Q} is computed by Tate's algorithm. It is the product $\prod_{p} p^{t_{p}}$ over the primes of bad reduction of E and

$$
f_{p}=\left\{\begin{array}{l}
f_{p}=1 \text { if has multiplicative reduction at } p \\
f_{p}=2+\delta \geq 2 \text { if } \mathrm{E} \text { has additive reduction at } p, \\
f_{p}=2 \text { if } \mathrm{E} \text { has additive reduction at } p \text { and } p \neq 2,3 .
\end{array}\right.
$$

Definition

Let E / \mathbb{Q} be an elliptic curve. We say that E is semi-stable if at every prime p the reduction of E at p is good or multiplicative.

The Conductor N_{E}

"Definition"

The conductor N_{E} of an elliptic curve E over \mathbb{Q} is computed by Tate's algorithm. It is the product $\prod_{p} p^{t_{p}}$ over the primes of bad reduction of E and

$$
f_{p}=\left\{\begin{array}{l}
t_{p}=1 \text { if has multiplicative reduction at } p \\
f_{p}=2+\delta \geq 2 \text { if } \mathrm{E} \text { has additive reduction at } p, \\
f_{p}=2 \text { if } \mathrm{E} \text { has additive reduction at } p \text { and } p \neq 2,3 .
\end{array}\right.
$$

Definition

Let E / \mathbb{Q} be an elliptic curve. We say that E is semi-stable if at every prime p the reduction of E at p is good or multiplicative.

Theorem (Mazur)

Let $p \geq 5$ be a prime and E a semi-stable elliptic curve over \mathbb{Q}. Then, the representation $\bar{\rho}_{E, p}$ is irreducible.

I-adic Galois Representations attached to E

We will now attach an I-adic representation. Fix a prime I and consider the I^{n}-torsion sequence:

$$
E[I] \stackrel{[l]}{\leftarrow} E\left[l^{2}\right] \longleftarrow E\left[l^{3}\right] \longleftarrow \ldots
$$

taking the inverse limit we have the Tate Module at /

From the compatibility of the action of $G_{\mathbb{Q}}$ with $[I]$ we have an action on $T_{1}(E)$. Since $A u t\left(E\left\lceil I^{n}\right\rceil\right)$ and $G L_{2}\left(\mathbb{Z} / I^{n} \mathbb{Z}\right)$ are isomorphic we also have

$$
\operatorname{Aut}\left(T_{l}(E)\right) \xrightarrow{\sim} G L_{2}\left(\mathbb{Z}_{l}\right),
$$

hence there is a continuous homomorphism

I-adic Galois Representations attached to E

We will now attach an I-adic representation. Fix a prime I and consider the l^{n}-torsion sequence:

$$
E[I] \stackrel{[l]}{\leftarrow} E\left[l^{2}\right] \longleftarrow E\left[l^{3}\right] \longleftarrow \ldots
$$

taking the inverse limit we have the Tate Module at /

$$
T_{l}(E)=\lim _{n}\left\{E\left[I^{n}\right]\right\} \cong \mathbb{Z}_{l} \oplus \mathbb{Z}_{l} .
$$

From the compatibility of the action of $G_{\mathbb{Q}}$ with [/] we have an action on $T_{l}(E)$. Since $\operatorname{Aut}\left(E\left[I^{\prime n}\right]\right)$ and $G L_{2}\left(\mathbb{Z} / I^{n} \mathbb{Z}\right)$ are isomorphic we also have

$$
\operatorname{Aut}\left(T_{l}(E)\right) \xrightarrow{\sim} G L_{2}\left(\mathbb{Z}_{l}\right),
$$

hence there is a continuous homomorphism

$$
\rho_{E, I}: G_{\mathbb{Q}} \rightarrow G L_{2}\left(\mathbb{Z}_{I}\right) \subset G L_{2}\left(\mathbb{Q}_{l}\right) .
$$

Definition

Let p be a prime and $\mathfrak{p} \subset \overline{\mathbb{Z}}$ any maximal ideal over p. The decomposition and intertia groups at \mathfrak{p} are defined by

- $D_{\mathfrak{p}}=\left\{\sigma \in G_{\mathbb{Q}}: \mathfrak{p}^{\sigma}=\mathfrak{p}\right\}$ then $\sigma \in D_{\mathfrak{p}}$ acts on $\overline{\mathbb{Z}} / \mathfrak{p}=\overline{\mathbb{F}}_{p}$ as $(x+\mathfrak{p})^{\sigma}=x^{\sigma}+\mathfrak{p}$
- $I_{\mathfrak{p}}=\left\{\sigma \in D_{\mathfrak{p}}: x^{\sigma} \equiv x(\bmod \mathfrak{p})\right.$ for all $\left.x \in \overline{\mathbb{Z}}\right\}$ is the kernel of the reduction $D_{p} \rightarrow G_{\mathbb{F}_{p}}$.

An absolute Frobenius element over p is any preimage Frob $_{\mathfrak{p}} \in D_{\mathfrak{p}}$ of the Frobenious automorphism in $G_{\mathbb{F}_{p}}\left(x \mapsto x^{p}\right)$.
$\mathrm{Frob}_{\mathfrak{p}}$ are dense in $\mathrm{G}_{\mathbb{Q}}$.
Definition
Let ρ be a Galois representation and let p be a prime. Then ρ is
said to be unramified at p if the inertia subgroup I_{p} is
contained in Ker(p) for any maximal Ideal p © \bar{Z} lying over p.

Definition

Let p be a prime and $\mathfrak{p} \subset \overline{\mathbb{Z}}$ any maximal ideal over p. The decomposition and intertia groups at \mathfrak{p} are defined by

- $D_{\mathfrak{p}}=\left\{\sigma \in G_{\mathbb{Q}}: \mathfrak{p}^{\sigma}=\mathfrak{p}\right\}$ then $\sigma \in D_{\mathfrak{p}}$ acts on $\overline{\mathbb{Z}} / \mathfrak{p}=\overline{\mathbb{F}}_{p}$ as $(x+\mathfrak{p})^{\sigma}=x^{\sigma}+\mathfrak{p}$
- $I_{\mathfrak{p}}=\left\{\sigma \in D_{\mathfrak{p}}: x^{\sigma} \equiv x(\bmod \mathfrak{p})\right.$ for all $\left.x \in \overline{\mathbb{Z}}\right\}$ is the kernel of the reduction $D_{p} \rightarrow G_{\mathbb{F}_{p}}$.

An absolute Frobenius element over p is any preimage Frob $_{p} \in D_{p}$ of the Frobenious automorphism in $G_{\mathbb{F}_{p}}\left(x \mapsto x^{p}\right)$.
Frob $_{p}$ are dense in $G_{\mathbb{Q}}$.

Definition

Let ρ be a Galois representation and let p be a prime. Then ρ is said to be unramified at p if the inertia subgroup I_{p} is contained in $\operatorname{Ker}(\rho)$ for any maximal ideal $\mathfrak{p} \subset \overline{\mathbb{Z}}$ lying over p.

Galois Representations attached to E

Let $p \nmid N_{E}$ be a prime of good reduction for E and define

$$
a_{p}(E)=p+1-\# \tilde{E}\left(\mathbb{F}_{p}\right)
$$

where $\# \tilde{E}\left(\mathbb{F}_{p}\right)$ is the number of points in the reduced curve \tilde{E}.

Galois Representations attached to E

Let $p \nmid N_{E}$ be a prime of good reduction for E and define

$$
a_{p}(E)=p+1-\# \tilde{E}\left(\mathbb{F}_{p}\right),
$$

where $\# \tilde{E}\left(\mathbb{F}_{p}\right)$ is the number of points in the reduced curve \tilde{E}.

Theorem

The Galois representation $\rho_{E,}$ is unramified at every prime $p \nmid N_{E}$. For any such p let $\mathfrak{p} \subset \overline{\mathbb{Z}}$ be any maximal ideal over p.
Then the characteristic equation of $\rho_{E, /}\left(\right.$ Frob $\left._{\mathrm{p}}\right)$ is

$$
x^{2}-a_{p}(E) x+p=0 .
$$

The Galois representation $\rho_{E, /}$ is irreducible.

The modular group $S L_{2}(\mathbb{Z})$ is defined by

$$
S L_{2}(\mathbb{Z})=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

and has the important congruence subgroups

$$
\begin{aligned}
& \Gamma_{0}(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in S L_{2}(\mathbb{Z}):\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \equiv\left[\begin{array}{ll}
* & * \\
0 & *
\end{array}\right] \bmod N\right\} \\
& \Gamma_{1}(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in S L_{2}(\mathbb{Z}):\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \equiv\left[\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right] \bmod N\right\}
\end{aligned}
$$

where "*" means unspecified. Clearly, $\Gamma_{1}(N) \subset \Gamma_{0}(N)$.

Modular Forms

Let $\Gamma(N) \subset S L_{2}(\mathbb{Z})$ be a congruence subgroup. An holomorphic function $f: \mathcal{H} \rightarrow \mathbb{C}$ is a modular form of weight k with respect to $\Gamma(N)$ if
(1) For all $\tau \in \mathcal{H}$ and $\alpha \in \Gamma(N)$,

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau)
$$

(2) For all $\alpha \in S L_{2}(\mathbb{Z})$, exists a Fourier expansion

$$
(c \tau+d)^{-k} f\left(\frac{a \tau+b}{c \tau+d}\right)=\sum_{n=0}^{\infty} c_{n} q^{n / N}
$$

where $q=e^{2 \pi i \tau}$.
If in addition, $c_{0}=0$ in all the above Fourier expansions, then f is a said to be a cusp form. When $\alpha=$ Id we denote the Fourier coefficients c_{n} in (2) by $a_{n}(f)$. Denoted by $S_{k}(\Gamma(N))$ the set of the cusp forms of weight k with respect to $\Gamma(N)$.

Modular Forms

- $S_{k}(\Gamma(N))$ is a vector space over \mathbb{C} of finite dimension.
- In particular, $\mathcal{S}_{2}\left(\Gamma_{0}\left(2^{t}\right)\right)=\{0\}$ for $t \in\{0,1,2,3,4\}$ and $\mathcal{S}_{2}\left(\Gamma_{0}(32)\right)$ has dimension 1.
- $S_{k}\left(\Gamma_{1}(N)\right)=\oplus S_{k}(N, \epsilon)$, where the sum is over the Dirichlet characters ϵ of modulus N .
- $f \in S_{k}(N, \epsilon)$ if

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=\epsilon(d)(c \tau+d)^{k} f(\tau)
$$

for matrices in $\Gamma_{0}(N)$

- There are Hecke operators $T_{n}(n \geq 1)$ acting on $S_{k}(\Gamma(N))$.
- There are cuspforms that are eigenvectos for all T_{n}. In that case $T_{n}(f)=a_{n}(f) f$. If $f \in S_{k}(N, \epsilon)$ is such a form we say it is an eigenform of level N and character ϵ. We say f is normalized if $a_{1}(f)=1$.

Modular Forms

Denote by $\mathbb{Q}_{f}=\mathbb{Q}\left(\left\{a_{p}(f)\right\}\right)$ the coefficient field of f.

Theorem

Let $f \in \mathcal{S}_{k}(N, \epsilon)$ be a normalized eigenform with number field \mathbb{Q}_{f}. Let / be a prime. For each maximal ideal λ of $\mathcal{O}_{\mathbb{Q}_{f}}$ lying over I there is an irreducible 2-dimensional Galois representation

$$
\rho_{f, \lambda}: G_{\mathbb{Q}} \rightarrow G L_{2}\left(\mathbb{Q}_{f, \lambda}\right)
$$

This representation is unramified at every prime $p \nmid I N$. For any such p let $\mathfrak{p} \subset \overline{\mathbb{Z}}$ be any maximal ideal lying over p. Then $\rho_{f, \lambda}\left(\right.$ Frob $\left._{p}\right)$ satisfies the polynomial equation

$$
x^{2}-a_{p}(f) x+\epsilon(p) p^{k-1}=0
$$

Modular Forms

A representation of $G_{\mathbb{Q}}$ is odd if $\rho(c)=-1$, where c is the complex conjugation. Let χ_{l} be the l-adic cyclotomic character.

Definition

Let L be a finite extension of \mathbb{Q}_{l} and consider a Galois representation $\rho: G_{\mathbb{Q}} \rightarrow G L_{2}(L)$. Suppose that ρ is irreducible, odd and that det $\rho=\epsilon \chi_{l}^{k-1}$ where ϵ has finite image. Then ρ is modular of level M_{f} if there exists a newform $f \in \mathcal{S}_{k}\left(M_{f}, \epsilon\right)$ and a prime λ above $/$ such that $\mathbb{Q}_{f, \lambda}$ embedds in L and such $\rho_{f, \lambda} \sim \rho$.

Modularity Theorem
Let E / \mathbb{Q} be an elliptic curve. E is modular of level N_{E}, i.e. there
is a newform $f \in \mathcal{S}_{2}\left(N_{E}, \epsilon=1\right)$, such that $\rho_{E, I} \sim \rho_{f, l}$ for all I. In
particular, $a_{p}(f)=a_{p}(E)$ for all primes $p \nmid N_{E}$.

Modular Forms

A representation of $G_{\mathbb{Q}}$ is odd if $\rho(c)=-1$, where c is the complex conjugation. Let χ_{l} be the l-adic cyclotomic character.

Definition

Let L be a finite extension of \mathbb{Q}_{l} and consider a Galois representation $\rho: G_{\mathbb{Q}} \rightarrow G L_{2}(L)$. Suppose that ρ is irreducible, odd and that det $\rho=\epsilon \chi_{l}^{k-1}$ where ϵ has finite image. Then ρ is modular of level M_{f} if there exists a newform $f \in \mathcal{S}_{k}\left(M_{f}, \epsilon\right)$ and a prime λ above $/$ such that $\mathbb{Q}_{f, \lambda}$ embedds in L and such $\rho_{f, \lambda} \sim \rho$.

Modularity Theorem

Let E / \mathbb{Q} be an elliptic curve. E is modular of level N_{E}, i.e. there is a newform $f \in \mathcal{S}_{2}\left(N_{E}, \epsilon=1\right)$, such that $\rho_{E, I} \sim \rho_{f, l}$ for all I. In particular, $a_{p}(f)=a_{p}(E)$ for all primes $p \nmid N_{E}$.

Modularity

We are also interested in modularity of $\bmod p$ representations. For example, those arising from p-torsion points of elliptic curves or abelian varieties.

Definition

An irreducible representation $\bar{\rho}: G_{\mathbb{Q}} \rightarrow G L_{2}\left(\bar{F}_{p}\right)$ is modular of type (N, k, ϵ) if there exists a newform $f \in \mathcal{S}_{k}(N, \epsilon)$ and a maximal ideal $\lambda \subset \mathcal{O}_{\mathbb{Q}_{f}}$ lying over p such that $\bar{\rho}_{f, \lambda} \sim \bar{\rho}$

Modularity

We are also interested in modularity of $\bmod p$ representations. For example, those arising from p-torsion points of elliptic curves or abelian varieties.

Definition

An irreducible representation $\bar{\rho}: G_{\mathbb{Q}} \rightarrow G L_{2}\left(\overline{\mathbb{F}}_{p}\right)$ is modular of type (N, k, ϵ) if there exists a newform $f \in \mathcal{S}_{k}(N, \epsilon)$ and a maximal ideal $\lambda \subset \mathcal{O}_{\mathbb{Q}_{f}}$ lying over p such that $\bar{\rho}_{f, \lambda} \sim \bar{\rho}$

Let $\bar{\rho}: G_{\mathbb{Q}} \rightarrow G L_{2}\left(\overline{\mathbb{F}}_{p}\right)$ be odd and irreducible.

- Serre gives recipies compute the $N(\bar{\rho})$ (Artin conductor), $k(\bar{\rho})$ and $\epsilon(\bar{\rho})$.
- There exists the notion of $\bar{\rho}$ being finite at a prime I.
- If $I \neq p$ then $\bar{\rho}$ being finite at $/$ is equivalent to being unramified.

Modularity

- Ex. for $I=p$: if E is has multiplicative reduction at p and $p \mid \nu_{p}(\Delta)$ or E has good reduction at p then $\bar{\rho}_{E, p}$ is finite at p.
- $N(\bar{\rho})$ is divisible precisely by the primes / for which $\bar{\rho}$ is not finite and depends only on $\bar{\rho} \mid l_{l}$ for those primes.

Level Lowering Theorem

Let $p \geq 3$ be a prime. Let $\bar{\rho}: G_{\mathbb{Q}} \rightarrow G L_{2}\left(\mathbb{F}_{p^{r}}\right)$ be irreducible over $\overline{\mathbb{F}}_{p}$ and modular of type $(N, 2,1)$. If $\bar{\rho}$ is finite at p then it is modular of type $(N(\bar{\rho}), 2,1)$.

Modularity

- Ex. for $I=p$: if E is has multiplicative reduction at p and $p \mid \nu_{p}(\Delta)$ or E has good reduction at p then $\bar{\rho}_{E, p}$ is finite at p.
- $N(\bar{\rho})$ is divisible precisely by the primes / for which $\bar{\rho}$ is not finite and depends only on $\bar{\rho} \mid l_{l}$ for those primes.

Level Lowering Theorem

Let $p \geq 3$ be a prime. Let $\bar{\rho}: G_{\mathbb{Q}} \rightarrow G L_{2}\left(\mathbb{F}_{p^{r}}\right)$ be irreducible over $\overline{\mathbb{F}}_{p}$ and modular of type $(N, 2,1)$. If $\bar{\rho}$ is finite at p then it is modular of type $(N(\bar{\rho}), 2,1)$.

Serre Conjecture (Khare, Wintenberger)

Let $\bar{\rho}: G_{\mathbb{Q}} \rightarrow G L_{2}\left(\overline{\mathbb{F}}_{p}\right)$ be odd and irreducible. The $\bar{\rho}$ is modular of type $(N(\bar{\rho}), k(\rho), \epsilon(\rho))$

The Generalized Fermat Equation

We will study the solutions of the equation

$$
x^{p}+2^{\alpha} y^{p}+z^{p}=0
$$

in the following order:

- $\alpha=0$ (Fermat's Last Theorem)
- $\alpha>1$
- $\alpha=1$

But first we need to introduce the Frey-Hellegouarch Curves!

Frey Curves

Definition (ABC curve)

Let A, B, C be non-zero coprime integers such that
$A+B+C=0$ and define the elliptic curve over \mathbb{Q} given by

$$
E_{A, B, C}: \quad y^{2}=x(x-A)(x+B)
$$

that has discriminant (not always minimal) of the form $\Delta=2^{4}(A B C)^{2}$.

Theorem
 When $A \equiv-1 \bmod 4$ and $B \equiv 0 \bmod 32$, then $E_{A, B, C}$ is semi-stable and its conductor is $\operatorname{rad}(A B C)$, the product of the primes dividing $A B C$.

Frey Curves

Definition (ABC curve)

Let A, B, C be non-zero coprime integers such that
$A+B+C=0$ and define the elliptic curve over \mathbb{Q} given by

$$
E_{A, B, C}: \quad y^{2}=x(x-A)(x+B)
$$

that has discriminant (not always minimal) of the form
$\Delta=2^{4}(A B C)^{2}$.

Theorem

When $A \equiv-1 \bmod 4$ and $B \equiv 0 \bmod 32$, then $E_{A, B, C}$ is semi-stable and its conductor is $\operatorname{rad}(A B C)$, the product of the primes dividing $A B C$.

$E_{A, B, C}$ Curves

We need to understand the ramification of $\bar{\rho}_{E, p}$.

Theorem (Hellegouarch)

Let C / \mathbb{Q} be an elliptic curve and $I \neq 2, p$. If $\| N_{C}$ is of multiplicative reduction and $p \mid \nu_{l}(\Delta(C))$ then $\bar{\rho}_{E, p}$ is unramified at I.

Néron-Ogg-Shafarevich Criterium

Let C / \mathbb{Q} be an elliptic curve. C has good reduction at / if and only if $\rho_{C, p}$ is unramified at $/$ for some prime $p \neq l$ if and only if $\rho_{C, p}$ is unramified at / for all primes $p \neq I$.

Suppose (a, b, c) is a non-trivial $(a b c \neq 0)$ primitive (i.e. $\operatorname{gcd}(a, b, c)=1)$ solution of $x^{p}+y^{p}=z^{p}$ and let

$$
A=a^{p} \quad B=b^{p} \quad C=c^{p} .
$$

Without loss of generality we can suppose that $a \equiv-1(\bmod 4)$ and b to be even.

Corollary

Let $E=E_{a^{p}, b^{p}, c^{p}}$. For $p \geq 5$, the representation $\bar{\rho}_{E, p}$ is unramified outside $2 p$.

Proof: Let $l \neq 2, p$.

- $\Delta(E)=2^{4}(A B C)^{2}=2^{4}(a b c)^{2 p}$
- If $I \nmid a b c \Rightarrow I \nmid \Delta \Rightarrow E$ has good reduction at $I \Rightarrow \rho_{E, p}$ is unramified at $/$ by $\mathrm{N}-\mathrm{O}-\mathrm{S} \Rightarrow \bar{\rho}_{E, p}$ also is.
- $p \geq 5 \Rightarrow B \equiv 0(\bmod 32)$ then E is semistable. If $/ \mid a b c$ then by Hellgouarch theorem $\bar{\rho}_{E, p}$ is not ramified at I.

Fermat-Wiles Theorem

Let $p \geq 5$ be a prime. There are no non-trivial primitive solutions of $x^{p}+y^{p}+z^{p}=0$.

Proof: Suppose that (a, b, c) is a non-trivial primitive solution.
Recall $E=E_{a^{p}, b^{p}, c^{p}}$ is semi-stable with $\Delta=2^{4}(a b c)^{2 p}$.

Fermat-Wiles Theorem

Let $p \geq 5$ be a prime. There are no non-trivial primitive solutions of $x^{p}+y^{p}+z^{p}=0$.

Proof: Suppose that (a, b, c) is a non-trivial primitive solution.
Recall $E=E_{a^{p}, b^{p}, c^{p}}$ is semi-stable with $\Delta=2^{4}(a b c)^{2 p}$.

- Modularity theorem (semi-stable case) $\Rightarrow \rho_{E, p}$ is modular of level $N_{E} \Rightarrow \bar{\rho}_{E, p}$ is modular of level N_{E}.
- $\bar{\rho}_{E, p}$ is irreducible by Mazur theorem.
- $\bar{\rho}_{E, p}$ is unramified outside $2 p$
- $p \mid \nu_{p}(\Delta)$ then $\bar{\rho}_{E, p}$ is finite at $p \Rightarrow N\left(\bar{\rho}_{E, p}\right)=2$.
- We can take N_{E} to be $N\left(\bar{\rho}_{E, p}\right)$ by the LLT.
- $\mathcal{S}_{2}\left(\Gamma_{0}(2)\right)=\{0\} \Rightarrow \bar{\rho}_{E, p}$ is not modular, contradiction!

$$
a^{p}+2^{\alpha} b^{p}+c^{p}=0, \quad 1 \leq \alpha \leq p-1
$$

- Let (a, b, c) be non-trivial and primitive solution
- Observe that for $\alpha=1$ there exist the solution $(-1,1,-1)$!
- Put $A=a^{p}, B=2^{\alpha} b^{p}$ and $C=c^{p}$

From Tate's algorith we have:

- $E=E_{A, B, C}: y^{2}=x(x-A)(x+B)$ is semistable for $I \neq 2$.
- $N_{E}=2^{t} \operatorname{rad}^{\prime}(A B C)$ with $t \in\{0,1,3,5\}$
- $4 \mid B$ if and only if $t \leq 3$
- $t=5$ if and only if $\operatorname{ord}_{2}(B)=1$

Theorem

Let $p \geq 5$ be a prime and $\alpha>1$. The equation $x^{p}+2^{\alpha} y^{p}+z^{p}=0$ has no non-trivial primitive solutions.

Proof: Recall that $N_{E}=2^{t} r a d^{\prime}(A B C)$ and $\Delta=2^{s}(a b c)^{2 p}$

- Modularity theorem $\Rightarrow \rho_{E, p}$ is modular of level $N_{E} \Rightarrow \bar{\rho}_{E, p}$ is modular of level N_{E}.
- Suppose $\bar{\rho}_{E, p}$ irreducible for $p \geq 5$ (Mazur do not apply!)
- $\bar{\rho}_{E, p}$ unramified outside $2 p$
- $\bar{\rho}_{E, p}$ is finite at $p \Rightarrow N\left(\bar{\rho}_{E, p}\right)=2^{t}$.
- We can take N_{E} to be $N\left(\bar{\rho}_{E, p}\right)$ by LLT
- $\mathcal{S}_{2}\left(\Gamma_{0}\left(2^{t}\right)\right)=\{0\}$ for $t \in\{0,1,2,3,4\}$ and $\mathcal{S}_{2}\left(\Gamma_{0}(32)\right)$ has dimension 1.
- $N\left(\bar{\rho}_{E, p}\right)=2^{t} \Rightarrow t=5 \Rightarrow \operatorname{ord}_{2}(B)=\operatorname{ord}_{2}\left(2^{\alpha} b^{p}\right)=1$, contradiction with $\alpha>1$ or b even

Theorem

The representation $\bar{\rho}_{E, p}$ is irreducible for $p \geq 5$.
Proof: Recall $N_{E}=2^{t}$ rad $^{\prime}(A B C)$ with $t \in\{0,1,3,5\}$

- Suppose E semistable $(t=0,1)$. Follows from Mazur theorem.
- E not semistable \Rightarrow the 2-part of N_{E} is $2^{2+\delta} \Rightarrow \delta=1,3$
- Suppose $\bar{\rho}^{s s} \mid I_{2}=\epsilon_{1} \oplus \epsilon_{2}$ is reducible
- $\delta=\operatorname{cond}\left(\epsilon_{1}\right)+\operatorname{cond}\left(\epsilon_{2}\right)$
- $\operatorname{det} \bar{\rho}=\bar{\chi}_{p}=\epsilon_{1} \epsilon_{2}$ is unramified at $2 \Rightarrow \epsilon_{2}=\epsilon_{1}^{-1}$
- Then $\delta=2 \operatorname{cond}\left(\epsilon_{1}\right)$ is even, contradiction.
- Thus $\bar{\rho} \mid I_{2}$ is irreducible $\Rightarrow \bar{\rho}$ irreducible.

Observe that $E_{0}=E_{(-1,1,-1)}$ by Modularity and LLT must correspondo to the eigenform in $\mathcal{S}_{2}\left(\Gamma_{0}(32)\right)$. The same is true for any other $E_{(a, b, c)}$.

Proposition

If $p \equiv 1 \bmod 4$, then the image of $\bar{\rho}_{E_{0}, p}$ is contained in the normalizer of a Cartan split subgroup of $G L_{2}\left(\mathbb{F}_{p}\right)$.

Mazur-Momose Theorem

Let $p \geq 17$ and C / \mathbb{Q} be an elliptic curve. If the image of $\bar{\rho}_{C, p}$ is contained in the normalizer of a Cartan split subgroup of $G L_{2}\left(\mathbb{F}_{p}\right)$ then C can not have multiplicative reduction at primes primes $I \neq 2$.

Theorem

Let $p \geq 17$ and $p \equiv 1 \bmod 4$. Let (a, b, c) be non-trivial primitive solution of $x^{p}+2 y^{p}+z^{p}=0$. Then $(a, b, c)=(-1,1,-1)$.

Proof:

- We can suppose that a, b, c are all odd.
- $N_{E}=2^{t} \operatorname{rad}^{\prime}(A B C) \Rightarrow E$ has multiplicative reduction at all odd primes dividing abc.
- Since $p \equiv 1 \bmod 4$ and $\bar{\rho}_{E, p} \equiv \bar{\rho}_{E_{0}, p}$ by the proposition $\bar{\rho}_{E, p}$ is under Mazur-Momose hypothesis.
- Then by Mazur-Momose E has no primes of multiplicative reduction hence $a b c= \pm 1$
- Thus, the only normalized solution is $(-1,1,-1)$.

The equation $x^{5}+y^{5}=d z^{p}$

Now we proceed to the generalized equation!

Theorem (Dieulefait, F)

For any $p>73$ such that $p \equiv 1 \bmod 4$, the equation
$x^{5}+y^{5}=3 \gamma z^{D}$ has no non-trivial primitive solutions.

The equation $x^{5}+y^{5}=d z^{p}$

Now we proceed to the generalized equation!
Theorem (Billerey and Billerey, Dieulefait)
Let $d=2^{\alpha} 3^{\beta} 5^{\gamma}$ where $\alpha \geq 2, \beta, \gamma, \geq 0$, or $d=7,13$. Then, for $p>19$ the equation $x^{5}+y^{5}=d z^{p}$ has no non-trivial primitive solution.

Let γ be an integer divisible only by primes $/ \equiv \equiv 1(\bmod 5)$

The equation $x^{5}+y^{5}=d z^{p}$

Now we proceed to the generalized equation!

Theorem (Billerey and Billerey, Dieulefait)

Let $d=2^{\alpha} 3^{\beta} 5^{\gamma}$ where $\alpha \geq 2, \beta, \gamma, \geq 0$, or $d=7,13$. Then, for $p>19$ the equation $x^{5}+y^{5}=d z^{p}$ has no non-trivial primitive solution.

Let γ be an integer divisible only by primes $I \not \equiv 1(\bmod 5)$.

Theorem (Dieulefait, F)

For any $p>13$ such that $p \equiv 1 \bmod 4$ and $p \equiv \pm 1 \bmod 5$, the equation $x^{5}+y^{5}=2 \gamma z^{p}$ has no non-trivial primitive solutions.

Theorem (Dieulefait, F)

For any $p>73$ such that $p \equiv 1 \bmod 4$, the equation $x^{5}+y^{5}=3 \gamma z^{p}$ has no non-trivial primitive solutions.

Relating two equations

Let (a, b, c) be a primitive solution to $x^{5}+y^{5}=d \gamma z^{p}$. From
Key factorization:
$x^{5}+y^{5}=(x+y)\left(x^{4}-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4}\right)=(x+y) \phi(x, y)$
can be seen that
We need to prove that $\phi(x, y)=r z^{p}$ where $r=1,5$ has no non-trivial primitive solutions if $d \mid a+b$.

Observe that over $\mathbb{Q}(\sqrt{5})$

- $\phi(x, y)=\phi_{1}(x, y) \phi_{2}(x, y)$, where
- $\phi_{1}(x, y)=x^{2}+\omega x y+y^{2}$ and $\phi_{2}(x, y)=x^{2}+\bar{\omega} x y+y^{2}$, with
- $\omega=\frac{-1+\sqrt{5}}{2}, \bar{\omega}=\frac{-1-\sqrt{5}}{2}$

The Frey \mathbb{Q}-curve

Let (a, b, c) be a primitive solution of $\phi(x, y)=r z^{p}$.

Definition (Frey-curve)

Consider over $\mathbb{Q}(\sqrt{5})$ the curve given by

$$
E_{(a, b)}: y^{2}=x^{3}+2(a+b) x^{2}-\bar{\omega} \phi_{1}(a, b) x,
$$

with $\Delta(E)=2^{6} \bar{\omega} \phi \phi_{1}$, where

- There are Galois representations $\rho_{E, l}$ and $\bar{\rho}_{E, /}$ of $G_{\mathbb{Q}}(\sqrt{5})$
- We need to extend them to $G_{\mathbb{Q}}$ and compute $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$ to apply Serre conjecture

From Serre conjecture there is a newform f of type $(M, 2, \bar{\epsilon})$ with $M=1600,800,400$ or 100 and a prime \mathfrak{P} in \mathbb{Q}_{f} above p such that $\bar{\rho} \equiv \bar{\rho}_{f, \mathfrak{P}}(\bmod \mathfrak{P})$

Observe that $\mathbb{Q}(i)=\mathbb{Q}(\bar{\epsilon}) \subseteq \mathbb{Q}_{f}$ and define the sets:
S1: Newforms with CM (Complex Multiplication),
S2: Newforms without CM and field of coefficients strictly containing $\mathbb{Q}(i)$,

S3: Newforms without CM and field of coefficients $\mathbb{Q}(i)$

From Serre conjecture there is a newform f of type $(M, 2, \bar{\epsilon})$ with $M=1600,800,400$ or 100 and a prime \mathfrak{P} in \mathbb{Q}_{f} above p such that $\bar{\rho} \equiv \bar{\rho}_{f, \mathfrak{P}}(\bmod \mathfrak{P})$

Observe that $\mathbb{Q}(i)=\mathbb{Q}(\bar{\epsilon}) \subseteq \mathbb{Q}_{f}$ and define the sets:
S1: Newforms with CM (Complex Multiplication),
S2: Newforms without CM and field of coefficients strictly containing $\mathbb{Q}(i)$,
S3: Newforms without CM and field of coefficients $\mathbb{Q}(i)$

