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The system model

Consider a map in Rn : F : Rn → Rn (a discrete dynamical
system).

Consider a d-manifoldMd =
{
Td, Sd, . . .

}
⊂ Rn.

A parameterization of it will be an immersion K :Md → Rn
(DK has maximum rank d), d < n, K = K(Md).

Let f :Md →Md be the dynamics of F restricted over the
manifoldMd.
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The Invariance equation

Definition
We say that the manifold parameterized by K, K, is invariant
under F with internal dynamics f if K and f meets the invariance
equation:

F ◦K = K ◦ f

ie: if for each θ ∈Md we have F (K(θ)) = K(f(θ)).

We want to find these functions K and f .
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Vector Bundles, hyperbolicity and Normal Hyperbolicity

Consider M ⊂ Rn a manifold.

For one point of the manifold M  vector spaces:

TpM , tangent space to M at p.
Particulary, TpRn = Rn the tangent space to Rn at p.

Np = {v ∈ Rn|v ⊥ TpM}, normal space to M at p.

TpRn = TpM +Np, as a vectorial spaces sum.
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Vector Bundles, hyperbolicity and Normal Hyperbolicity

For all points (together) of the manifold M  vector bundles:
a manifold such which have a linear vector space associated to
every point of it:

TM = {(p, v) ∈M × Rn|v ∈ TpM}, tangent bundle of M .

N = {(p, v) ∈M × Rn|v ⊥ TpM}, normal bundle of M .

TRn|M = TM ⊕N , as a Whitney sum of the vector bundles.

For each p ∈M we have TpM ∼= Rd and Np
∼= Rn−d, called the

fibers of the vector space.
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Suppose we have found K = K(Md) and f .

DK generates the tangent space to each point of the
invariant manifold, TK(θ)K :

(DK)θ : TθMd → TK(θ)K

for each θ ∈Md, DK(θ) is represented as a n× d matrix, a
fiber.
Considering all θ ∈Md, we have a parameterization of the
tangent bundle, TK.

if N(θ) is a n× n− d matrix composed by n− d vectors
linearly independent to the vectors of DK(θ), then it
generates the normal space NK(θ), complementary to TK(θ)K.
Considering all θ ∈Md, we have a parameterization of the
normal bundle, N (K).
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So, we could write:

TK(θ)Rn = TK(θ)K +NK(θ) ∼= Rn as a sums of vector spaces.

TRn|K = TK ⊕N (K) as a sums of vector bundles.

We could define P (θ) := (DK(θ)|N(θ))n×n, a vector bundle
which generates the total space. So, it is an adapted frame of if

P :Md → TK(θ)K +NK(θ)
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We could also define the matrix map Λ :Md →Mn×n as the
dynamics over the tangent and normal bundles, the linearized
dynamics on this frame.

Then, Λ and P must satisfy the invariance of the splitting on the
bundles:

P (f(θ))−1DF (K(θ))P (θ) = Λ(θ)

Remark
The dynamics of the bundles on the model manifold will be of the form

Λ(θ) =
(

Λt(θ) B(θ)
O Λn(θ)

)
where Λt is the linearized dynamics on the tangent space (a d× d matrix),
Λn is the linearized dynamics on the normal space (a n− d× n− d matrix)
and B(θ) is a d× n− d matrix.

Marta Canadell A Parameterization Method for computing NHIT



Definitions and introducing the problem
The method

Implementation

As

DF (K(θ)) (DK(θ)|N(θ)) = (DK(f(θ))|N(f(θ)))
(

Λt(θ) B(θ)
O Λn(θ)

)
:

If B(θ) = 0, then the normal bundle is invariant: the invariance equation
is satisfied on the normal subspace

DF (K(θ))N(θ) = N(f(θ))Λn(θ)

If Λt(θ) = Df(θ), then the tangent bundle is invariant: the invariance
equation is satisfied on the tangent subspace

DF (K(θ))DK(θ) = DK(f(θ))Df(θ)
This is always true, as this equation is just the derivative of invariance
equation.

So, we will consider B(θ) = 0 and Λt(θ) = Df(θ) to have last two conditions
true and have both bundles invariant. In this way, the invariant manifold will be
normally hyperbolic.
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The algorithm is inspired in the parameterization method
(Cabré,Fontich, de la Llave) for finding a parameterization of
the invariant manifold and a dynamics on it.

The framework leads to solving invariance equations, for
which one uses a Newton method adapted to the dynamics
and the geometry of the (invariant) manifold, normally
hyperbolic invariant tori.
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Summary of the problem

If we want to find a normally hyperbolic invariant manifold, we are
looking for K, f , P and Λ such that:

F (K(θ)−K(f(θ)) = 0
DF (K(θ)P (θ)− P (f(θ))Λ(θ) = 0

DF (K(θ)N(θ)−N(f(θ))Λn(θ) = 0

But as tangent bundle and its dynamics are well defined directly
using derivatives of known values K and f , so we only have to
solve the second equation for the normal part.
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A newton method to compute K, f , P , Λ
Given an approximate normally hyperbolic invariant torus (K0, f0)
and its bundles (P0,Λ0) with error:

F (K0(θ)−K0(f0(θ)) = R(θ)n×1

DF (K0(θ))P0(θ)− P0(f0(θ))Λ0(θ) = S(θ)n×n

We look for (H,h,Q,∆) satisfying

−R̃(θ) = Λ(θ)H(θ)−
(

h(θ)
0

)
︸ ︷︷ ︸

n×d

−H(f(θ))

−S̃n(θ) = Λ(θ)Q(θ)−Q(f(θ))Λn(θ)−∆(θ)

And obtain the improved torus:
K(θ) = K0(θ) + P0(θ)H(θ), f(θ) = f0(θ) + h(θ),
N(θ) = N0(θ) + P0(θ)Q(θ), Λn(θ) = Λn0 (θ) + ∆(θ)
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Consider K(θ) = K0(θ) + P0(θ)H(θ) and f(θ) = f0(θ) + h(θ) as
new approximations of K and f .

We want to solve F (K(θ)−K(f(θ)) = 0, which in terms of the
new approximation means:

0 = F (K0(θ) + P0(θ)H(θ))
− (K0(f0(θ) + h(θ)) + P0(f0(θ) + h(θ))H(f0(θ) + h(θ)))

Doing computations, and neglecting quadratically small terms, it
becomes:

−R̃(θ) = Λ(θ)H(θ)−
(
h(θ)

0

)
−H(f(θ))

where R̃(θ) is the projection over the invariant subspaces
R̃(θ) := P−1

0 (f0(θ))R(θ).
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As the dynamics Λ0 splits into tangent and normal part

Λ0(θ) =
(

Λt0(θ) 0
0 Λn0 (θ)

)
=
(

Df0(θ) 0
0 Λn0 (θ)

)

last equation also splits into tangent and normal part:

−R̃t(θ) = Df0(θ)Ht(θ)− h(θ)−Ht(f0(θ))
−R̃n(θ) = Λn0 (θ)Hn(θ)−Hn(f0(θ))

and can be solved separately.

Marta Canadell A Parameterization Method for computing NHIT



Definitions and introducing the problem
The method

Implementation

STEP 1: Solve F (K(θ)−K(f(θ)) = 0
STEP 2: Solve DF (K(θ)N(θ)−N(f(θ))Λn(θ) = 0
Improvements in the method
The discretization of the system

Normal component

Also, as we suppose that the invariant manifold is hyperbolic, the
linearized normal dynamics is expressed as

Λn0 (θ) =
(

Λu0 (θ) 0
0 Λs0(θ)

)
and the normal part equation also splits into stable and unstable
components :

−R̃s(θ) = Λs0(θ)Hs(θ)−Hs(f0(θ))
−R̃u(θ) = Λu0(θ)Hu(θ)−Hu(f0(θ))

and can be solved separately.
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Normal component

We could solve both equation by simple iteration using the
contracting principle, which will converge to the wanted solutions
Hs, Hu.

 Stable Component : For Hs the equation is already a contraction
(linearized stable dynamics Λs0 contracting). Doing some arrangements on it we
obtain the iterating equation:

−R̃s(θ) = Λs0(θ)Hs(θ)−Hs(f0(θ)) 99K Hs
N+1(θ) = Λs0(f−1

0 (θ))Hs
N (f−1

0 (θ))+R̃s(f−1
0 (θ))

 Unstable Component : For Hu we have the equation as an expansion
(linearized unstable dynamics Λu0 expanding). Doing arrangements to get Λu0
inverted and so the equation as a contraction, the iterating equation is:

−R̃u(θ) = Λu0 (θ)Hu(θ)−Hu(f0(θ)) 99K Hu
N+1(θ) = (Λu0 (θ))−1 [Hu

N (f0(θ))− R̃u(θ)
]
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Tangent component
To solve the tangent part

−R̃t(θ) = Df0(θ)Ht(θ)− h(θ)−Ht(f0(θ))

we have to solve an overdetermined system: have one equation
with two unknowns ( Ht and h ).

So, we have to chose some condition over the system to be able to
solve it.

Election: Ht(θ) = 0, which means we don’t modify the
tangent part.

Doing this election, we obtain the uniqueness of the solution of the
equation, which will be:

h(θ) = R̃t(θ)
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Solution of F (K(θ)−K(f(θ)) = 0

The improved torus and it dynamics becomes of the form

K̂(θ) = K0(θ) +N0(θ)Hn
N (θ)

f̂(θ) = f0(θ) + R̃t(θ)

with a new error R̂(θ) = F (K̂(θ)− K̂(f̂(θ)) quadratically small
than R(θ).
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Suppose K̂ and f̂ had already been computed. The error on the
bundles changes to:

DF (K̂(θ))P0(θ)− P0(f̂(θ))Λ0(θ) = Ŝ(θ)n×n

and taking into account only the normal part of it, we consider:

DF (K̂(θ))N0(θ)−N0(f̂(θ))Λn0 (θ) = Ŝn(θ)n×n−d

Consider N(θ) = N0(θ) + P0(θ)Q(θ) and Λn(θ) = Λn0 (θ) + ∆(θ)
as new approximations of bundles and bundles dynamics.
We want to solve DF (K(θ)N(θ)−N(f(θ))Λn(θ) = 0, which in
terms of the new approximation means:

0 = DF (K̂(θ)) (N0(θ) +N0(θ)Q(θ))

−
(
N0(f̂(θ)) +N0(f̂(θ))Q(f̂(θ))

)
− (Λn0 (θ) + ∆n(θ))
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Doing computations, and neglecting quadratically small terms, it
becomes

−S̃n(θ) = Λ0(θ)Q(θ)−Q(f̂(θ))Λn0 (f̂(θ))−
(

0d×n−d
∆n(θ)n−d×n−d

)

where S̃n(θ) is the projection over the invariant subspaces,
S̃n(θ) := P−1

0 (f̂(θ))Ŝn(θ).
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Matrix notation

For Q and S we use the notation:

M(θ) =

(
M tt(θ) M ts(θ) M tu(θ)
Mst(θ) Mss(θ) Msu(θ)
Mut(θ) Mus(θ) Muu(θ)

)
n×n

were t, s, u means tangent, stable and unstable direction
projections respectively.

In our case we do not modify the tangent space, so we only need
lasts n− d columns corresponding to the normal space:

M(θ) =

(
M ts(θ) M tu(θ)
Mss(θ) Msu(θ)
Mus(θ) Muu(θ)

)
n×n−d
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Using this notation, we could split the last matrix equation into 6
equations as:

−S̃ts(θ) = Λt0(θ)Qts(θ)−Qts(f̂(θ))Λs0(f̂(θ))
−S̃ss(θ) = Λs0(θ)Qss(θ)−Qss(f̂(θ))Λs0(f̂(θ))−∆s(θ)
−S̃us(θ) = Λu0(θ)Qus(θ)−Qus(f̂(θ))Λs0(f̂(θ))
−S̃tu(θ) = Λt0(θ)Qtu(θ)−Qtu(f̂(θ))Λu0(f̂(θ))
−S̃su(θ) = Λs0(θ)Qsu(θ)−Qsu(f̂(θ))Λu0(f̂(θ))
−S̃uu(θ) = Λu0(θ)Quu(θ)−Quu(f̂(θ))Λu0(f̂(θ))−∆u(θ)
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Projection Method

Remark
To simplify the algorithm we use the projection method: make
projections into the normal direction, making zero the components
projected to itself: Qss = Quu = 0.

Doing it, we obtain directly the correction of the linearized normal
dynamics Λn(θ):

S̃ss(θ) = ∆s(θ)

S̃uu(θ) = ∆u(θ)
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The other 4 equations can be solved iterating by the contraction
principle: all equations are contractions or expansions by NHIM
definition (normal dynamics always dominates the character of
Λt(θ)).

Doing arrangements to obtain Q∗∗(θ), ∗ = {t, s, u}, conveniently
isolated, these 4 iterating equations become:

QtsN+1(θ) =
(
QtsN (f̂(θ))Λs0(θ)− S̃ts(θ)

)
(Λt0)−1(θ)

QusN+1(θ) =
(
QusN (f̂(θ))Λt0(θ)− S̃us(θ)

)
(Λu0 )−1(θ)

QtuN+1(θ) =
(
Λt0(f̂−1(θ))QtuN (f̂−1(θ)) + S̃tu(f̂−1(θ))

)
(Λu0 )−1(f̂−1(θ))

QsuN+1(θ) =
(
Λs0(f̂−1(θ))QsuN (f̂−1(θ)) + S̃su(f̂−1(θ))

)
(Λu0 )−1(f̂−1(θ))

and they converge to the solution when N →∞.
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Solution of DF (K(θ)N(θ)−N(f(θ))Λn(θ) = 0

The improved bundles and it dynamics becomes of the form

P̂ (θ) = (T̂ (θ)|N̂ s(θ)|N̂u(θ)):

N̂s(θ) = Ns
0 (θ) +DK0(θ)Qts(θ) +Nu

0 (θ)Qus(θ)
N̂u(θ) = Nu

0 (θ) +DK0(θ)Qtu(θ) +Ns
0 (θ)Qsu(θ)

T̂ (θ) = DK̂(θ)

Λ̂(θ) =

 Λ̂t(θ) 0 0
0 Λ̂s(θ) 0
0 0 Λ̂u(θ)

 :
Λ̂s(θ) = Sss(θ)
Λ̂u(θ) = Suu(θ)
Λ̂t(θ) = Df̂(θ)

with a new error Ŝ(θ) = DF (K̂(θ))P̂ (θ)− P̂ (f̂(θ))Λ̂(θ)
quadratically small than S(θ).
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We have to repeat STEP 1 and STEP 2 until new errors R and S
achieve the desired error-tolerance.
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The inverse of P (θ) as an unknown

Adding the inverse of P (θ)
as another unknown  make faster the method

Let PI0(θ) as an approximation of P−1
0 (θ), with an error

EPI(θ) = PI0(θ)P (θ)− Idn×n small.

If the new approximation is P̂ I(θ) = PI0(θ) +QI(θ)PI0(θ) with a
modification QI(θ) = − ˆEPI(θ), the improved inverse becomes:

P̂ I(θ) = PI0(θ)− ˆEPI(θ)PI0(θ)

which is computed each time after STEP 2.
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Discretization
To apply this method numerically, we need the torus, bundles and
dynamics discretizated.

We use the following discretization methods
Interpolation
Fourier expansions

This kind of discretization works correctly with this method as long
as the invariant tori remains as a graph.

We consider the model manifold 1-dimensional,Md = T1, and we
use functions h(θ) and M(θ) to represent the problem:

h : T1 → Rn

M : T1 →Mn×n
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Discretization by interpolation

We will use functions h represented as a Lagrange Interpolating
Polynomial of degree r:

h(τ) =
r∑
i=0

h(θi)Li(τ)

So we need to storage a finite mesh of values over the function.
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Let h discretizated by function values h(θj) at N equidistant
meshing points θj ∈ T1, j = 1, . . . , N , N large enough to well
approximate h.

When we need the value h(τ), for some τ 6= θj , j = 1, . . . , N we
have to:

1 Look for θj and θj+1 such that: · · · < θj ≤ τ < θj+1 < . . . .
2 Compute the Lagrange basis polynomials of this value τ

Li(θ) =

r∏
j=0,j 6=i

θ − θj

r∏
j=0,j 6=i

θi − θj
, i = 0, . . . , r

3 Compute Lagrange Polynomial of h on τ :

h(τ) =

(
r∑
i=0

h(θi)Li(τ)

)
mod 2π
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Lagrange basis polynomials modulus 2π

We are interpolating periodic
functions modulus 2π
instead of real functions

 
TAKE CARE in the computation
of Lagrange basis polynomials

modulus 2π

We use the next convention (interpolation cubic case) to consider
the nodes θj−1 < θj ≤ τ < θj+1 < θj+1:

j = 0 ⇒ θj−1 = θN−1 − 2π, θj = θ0, θj+1 = θ1, θj+1 = θ2
j = N − 2 ⇒ θj−1 = θN−3, θj = θN−2, θj+1 = θN−1, θj+1 = θ0 + 2π
j = N − 1 ⇒ θj−1 = θN−2, θj = θN−1, θj+1 = θ0 + 2π, θj+1 = θ1 + 2π

Otherwise, we have all values inside (0, 2π) and we don’t have any
modulus conflicting problem.
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Definitions and introducing the problem
The method

Implementation

STEP 1: Solve F (K(θ)−K(f(θ)) = 0
STEP 2: Solve DF (K(θ)N(θ)−N(f(θ))Λn(θ) = 0
Improvements in the method
The discretization of the system

To compute the tangent bundle and tangent linearized dynamics,
as we need to interpolate derivatives of K and f , we may compute
the derived Lagrange basis polynomials instead of the Lagrange
basis polynomials, and other computations are identically the same.

Marta Canadell A Parameterization Method for computing NHIT



Definitions and introducing the problem
The method

Implementation

STEP 1: Solve F (K(θ)−K(f(θ)) = 0
STEP 2: Solve DF (K(θ)N(θ)−N(f(θ))Λn(θ) = 0
Improvements in the method
The discretization of the system

Discretization by Fourier expansion

We will use functions h represented as Fourier expansions

h(τ) = c0 +
r∑

k=0
ck cos(kτ) + sk sin(kτ)

Then, we need to storage a finite number r of Fourier coefficients
sk, ck for each function we need in the method.

With this discretization method, we could add a condition to check
that the approximations we found are good approximated by
inspecting the tails of the Fourier series.
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Continue K NHIT with respect one parameter

The algorithm is applied to continuation of invariant curves,
saddle or attractor ones.

We continue the torus w.r.t. ONE parameter regardless its
dynamics, crossing resonances.

We explore the mechanism of breakdown of the saddle
invariant curve.
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Continuation steps

Let our discrete dynamical system F depends on one
perturbation parameter ε.

For some ε0, suppose known (or could had been computed
explicitly) a K NHIT with his dynamics and bundles.

Varying ε, we apply the method to compute a new K, f , P ,
Λ for each new ε.

We can follow incrementing ε while the method converges for
new epsilon: while we reach the prefixed tolerance in less than
15 steps. At this moment, the invariant torus breakdown (it
ceases to be normally hyperbolic).
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3D Fattened Arnold Family
The Fattened Arnold Family 3-dimensional (3D-FAF) is a map
F : T1 × R2 → T1 × R2 defined by :

F

 x
y
z

 =

 x+ a+ ε(sin(x) + y + z/2)
b(sin(x) + y)

c(sin(x) + y + z)


where a ∈ T1, b,c ∈ R are fixed parameters (b < 1, c > 1) and
ε ∈ R is the perturbation parameter.

We apply our method withM1 = T1 and n = 3.

We use the fixed parameters fixed as:
a = 0.1
b = 0.3
c = 2.4
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Unperturbed case: ε = 0
 a = 0: we have an explicit invariant circle given by the
expression:

x ∈ T1 : K0(x) =
(
x,

b

1− b sin(x), c

(1− b)(1− c) sin(x)
)

(2)

which is a graph.

 a > 0: an invariant circle already exists and it is an
approximation of (2), of the form:

K0(x) = (x, ϕ(x), ψ(x)) , x ∈ T1

By invariance, it has to meet the invariance equation:

F ((x, ϕ(x), ψ(x))) = (f0(x), ϕ(f0(x)), ψ(f0(x)))

from where we obtain the initial dynamics: f0(x) = x+ a.
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Unperturbed case: ε = 0

Second coordinate equality of the equation is a contraction
(as b = 0.3 < 1)

Third coordinate equality of the equation is an expansion ( as
c = 2.4 > 1)

So, we could solve each equality by iteration obtaining the initial
approximation of the invariant circle:

K0(x) = (x, ϕ(x), ψ(x)) , where


x ∈ T1

ϕ(x) =
∞∑
k=1

bk sin(x− ka)

ψ(x) = −
∞∑
k=1

ϕ(x+ka)+sin(x+ka)
ck
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Perturbed case: ε > 0

It hasn’t fixed points while ε ∈ [0, ε1), ε1 :=
∣∣∣−2a(1−b)(1−c)

2−c

∣∣∣
At ε1 a fixed point appears (have a FOLD) with eigenvalues:

λ1 = c > 1
λ2 = 1
λ3 = b < 1

For ε > ε1, this fixed point splits into two saddles, with
eigenvalues:{

SADDLE 1 SADDLE 2
1 < λ1 < c 1 < c < µ1
b < λ2 < 1 1 < µ2 < c
b < λ3 < 1 µ3 < b < 1

}
We can increase ε until ε2 :≈ 0.776177304, where λ2 and λ3
collide (with λ ≈ 0.624) and become two complex conjugate
eigenvalues. At this point, the invariant circle loss its normal
hyperbolicity.
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Figure: Evolution of all eigenvalues for the two fixed points of 3D-FAF from
fold ε1 = 0.49 until ε = 1.
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First initial approximation
We use as a initial approximation:

K0(θ) =

(
θ,

105∑
k=1

bk sin(θ − ka),−
105∑
k=1

ϕ(θ+ka)+sin(θ+ka)
ck

)

f0(θ) = θ + a

Λ0(θ) =

( Λt0(θ) 0 0
0 Λs0(θ) 0
0 0 Λu0 (θ)

)
=

( 1 0 0
0 b 0
0 0 c

)
the three eigenvalues of DF0.

P0(θ) =
(

∂K0
∂θ

(θ) Ns
0 (θ) Nu

0 (θ)
)
, where

Ns
0 (θ) =

( 0
1
0

)
and Nu

0 (θ) =

( 0
0
1

)
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We use the method with:
INTERPOLATION DISCRETIZATION CASE: initial mesh of
the parameterization of torus: 200 points.
FOURIER DISCRETIZATION CASE: initial number of Fourier
coefficients: 50 coefficients .
As a tolerance of the errors: ||R||, ||S||, ||EPI|| < 10−10.

At the end, we obtain:
 INTERPOLATION DISCRETIZATION CASE:

final mesh of the parameterization of torus: 409.600 points.
final epsilon value: 0.7418701172.

 FOURIER DISCRETIZATION CASE:
final number of Fourier coefficients: 10.000 coefficients.
final epsilon value: 0.7166513681.
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INTERPOLATION DISCRETIZATION CASE
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Figure: Evolution of the invariant tori (in red there the corresponding to
the unperturbed system and in blue the last NHIM we can compute, for
ε = 0.7418701172) and the dynamics over our last tori.
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INTERPOLATION DISCRETIZATION CASE
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Figure: Variation of normal fibers from the unperturbed system (a) until
the loss of nomal hyperbolicity, at ε = 0.7418701172 (b)
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INTERPOLATION DISCRETIZATION CASE
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Figure: Evolution of the dynamics of tangent and normal bundle, from
the unperturbed system (a) until ε = 0.7418701172 (b).
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INTERPOLATION DISCRETIZATION CASE
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Figure: Angles between all bundles, from the unperturbed system (a)
until ε = 0.7418701172 (b).
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FOURIER DISCRETIZATION CASE
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Figure: Evolution of the invariant tori (in red there the corresponding to
the unperturbed system and in blue the last NHIM we can compute, for
ε = 0.7166513681) and the dynamics over our last tori.
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FOURIER DISCRETIZATION CASE
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Figure: Variation of normal fibers from the unperturbed system (a) until
the loss of normal hyperbolicity, at ε = 0.7166513681 (b)
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FOURIER DISCRETIZATION CASE
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Figure: Evolution of the dynamics of tangent and normal bundle, from
the unperturbed system (a) until ε = 0.7166513681 (b).
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FOURIER DISCRETIZATION CASE
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Figure: Angles between all bundles, from the unperturbed system (a)
until ε = 0.7166513681 (b).
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FOURIER DISCRETIZATION CASE

 1.5708

 3.14159

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

max(T-Ns)
max(T-Nu)

max(Ns-Nu)

 0

 1.5708

 3.14159

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

epsilon

min(T-Ns)
min(T-Nu)

min(Ns-Nu)

Figure: Maximum and minim angles between all bundles from ε = 0 until
ε = 0.7166513681.

Marta Canadell A Parameterization Method for computing NHIT


	Definitions and introducing the problem
	The method
	STEP 1: Solve F(K()-K(f())=0
	STEP 2: Solve DF(K()N()-N(f())n()=0
	Improvements in the method
	The discretization of the system

	Implementation
	Some information of 3D-FAF
	Numerical Results


