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Background on Solar Sails
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What is a Solar Sail ?

• Solar Sails a proposed form of propulsion system that takes advantage of the
Solar radiation pressure to propel a spacecraft.

• The impact of the photons emitted by the Sun on the surface of the sail and
its further reflection produce momentum on it.

• Solar Sails open a wide new range of possible missions that are not accessible
by a traditional spacecraft.
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There have recently been two successful deployments of solar sails in space.

• IKAROS: in June 2010, JAXA managed to deploy the first solar sail in space.

• NanoSail-D2: in January 2011, NASA deployed the first solar sail that would
orbit around the Earth.
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The Dynamical Model

We use the Restricted Three Body Problem (RTBP) taking the Sun and Earth as
primaries and including the solar radiation pressure due to the solar sail.
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Sail~n

X
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Earth
Sun
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The Solar Sail

We consider the solar sail to be flat and perfectly reflecting. Hence, the force due
to the solar radiation pressure is in the normal direction to the surface of the sail.

The force due to the sail is defined by the sail’s orientation and the sail’s lightness
number.

• The sail’s orientation is given by the normal vector to the surface of the sail,
~n. It is parametrised by two angles, α and δ.

• The sail’s lightness number is given in terms of the dimensionless parameter
β. It measures the effectiveness of the sail.

Hence, the force is given by:

~Fsail = β
ms

r 2
ps

〈~rs ,~n〉2~n.
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The Sail Orientation

There are several ways to define the two angles that parametrise the sail
orientation α and δ.

α

δ Sun-line

~n

x

y

z

Ecliptic plane

We define:

• α is the angle between the
projection of ~rs and ~n on the
ecliptic plane.

• δ is the difference between:
a) the angle of the ~rs with the
ecliptic plane; and b) the angle of
~n with the ecliptic plane.

• as the sail cannot point towards
the Sun, we have that 〈~rs ,~n〉 ≥ 0.
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The Sail Effectiveness

The parameter β is defined as the ratio of the solar radiation pressure in terms of
the solar gravitational attraction. It is used to measure the performance of the solar

sail. It relates the ratio between the mass of the spacecraft and the size of the sail.

β =
σ∗

σ
, σ∗ ≈ 1.53 g/m2,

where σ is known as the sail loading parameter. With nowadays technology, it is

considered reasonable to take β ≈ 0.05, which corresponds to σ ≈ 30 g/m2. For
example: a spacecraft of 100 kg needs a square sail of 58 m2.

Reference: C. McInnes, “Solar Sail: Technology, Dynamics and Mission Applications”,

Springer-Praxis, 1999.
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Equations of Motion

The equations of motion are:

ẍ = 2ẏ + x − (1− µ)
x − µ
r 3
ps
− µx + 1− µ

r 3
pe

+ β
1− µ
r 2
ps
〈~rs ,~n〉2nx ,

ÿ = −2ẋ + y −
(

1− µ
r 3
ps

+
µ

r 3
pe

)
y + β

1− µ
r 2
ps
〈~rs ,~n〉2ny ,

z̈ = −
(

1− µ
r 3
ps

+
µ

r 3
pe

)
z + β

1− µ
r 2
ps
〈~rs ,~n〉2nz ,

where ~n = (nx , ny , nz) is the normal direction to the surface of the sail with,

nx = cos(φ(x , y) + α) cos(ψ(x , y , z) + δ),
ny = sin(φ(x , y , z) + α) cos(ψ(x , y , z) + δ),
nz = sin(ψ(x , y , z) + δ),

and ~rs = (x − µ, y , z)/rps is the Sun - sail direction.
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Dynamical Properties of the System
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Equilibrium Points (I)

• The RTBP has 5 equilibrium points (Li ). For small β, these 5 points are
replaced by 5 continuous families of equilibria, parametrised by α and δ.

• For a fixed small value of β, we have 5 disconnected family of equilibria around
the classical Li .

• For a fixed and larger β, these families merge into each other. We end up
having two disconnected surfaces, S1 and S2. Where S1 is like a sphere and
S2 is like a torus around the Sun.

• All these families can be computed numerically by means of a continuation
method.
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Equilibrium Points (II)

Equilibrium points in the XY plane

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Z

X

Sun

T2
T1

-0.04

-0.02

 0

 0.02

 0.04

-1.02 -1.01 -1 -0.99 -0.98 -0.97

Z

X

Earth

T2
T1

Equilibrium points in the XZ plane

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

-1 -0.5  0  0.5  1

Z

X

Sun

T2

-0.02

-0.01

 0

 0.01

 0.02

-1.01 -1.005 -1 -0.995 -0.99 -0.985 -0.98

Z

X

Earth

T2

A. Farrés (IMCCE, UB) Solar Sails SIMBa 13 / 62



Background Dynamics Station Keeping Surfing + realistic model Conclusions

Periodic Motion Around Equilibria

We must add a constrain on the sail orientation to find bounded motion. One can
see that when α = 0 and δ ∈ [−π/2, π/2] (i.e. only move the sail vertically w.r.t.
the Sun - sail line):

• The system is time reversible ∀δ by R : (x , y , z, ẋ , ẏ , ż, t)→ (x ,−y , z,−ẋ , ẏ ,−ż,−t)

and Hamiltonian only for δ = 0,±π/2.

• There are 5 disconnected families of equilibrium points parametrised by δ, we
call them FL1,...,5 (each one related to one of the Lagrangian points L1,...,5).

• Three of these families (FL1,2,3) lie on the Y = 0 plane, and the linear
behaviour around them is of the type saddle×centre×centre.

• The other two families (FL4,5) are close to L4,5, and the linear behaviour
around them is of the type sink×sink×source or sink×source×source.
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We focus on ...

• We focus on the motion around the equilibrium on the FL1 family close to
SL1 (they correspond to α = 0 and δ ≈ 0).

• We fix β = 0.051689 (loading parameter σ ≈ 30g/m2).

• We consider the sail orientation to be fixed along time.

L2 Earth Sun

SL3

L3

SL1SL2

L1

(Schematic representation of the equilibrium points on Y = 0)

Let us see the periodic motion around these points for a fixed sail orientation and
show how it varies when we change, slightly, the sail orientation.
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P-Family of Periodic Orbits

Periodic Orbits for δ = 0.
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P-Family of Periodic Orbits

Periodic Orbits for δ = 0.01.

Main family of periodic orbits for δ = 0.01
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P-Family of Periodic Orbits

Periodic Orbits for δ = 0.01.
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V-Family of Periodic Orbits
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Reduction to the Centre Manifold

Using an appropriate linear transformation, the equations around the fixed point
can be written as,

ẋ = Ax + f (x , y), x ∈ R4,
ẏ = By + g(x , y), y ∈ R2,

where A is an elliptic matrix and B an hyperbolic one, and f (0, 0) = g(0, 0) = 0
and Df (0, 0) = Dg(0, 0) = 0.

• We want to obtain y = v(x), with v(0) = 0, Dv(0) = 0, the local expression
of the centre manifold.

• The flow restricted to the invariant manifold is

ẋ = Ax + f (x , v(x)).
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On the Centre Manifold

We have computed the centre manifold around different equilibrium points of the
FL1 family up to degree 16.

• After this reduction we are in a four dimensional phase space (x1, x2, x3, x4)
that is difficult to visualise.

• We need to perform suitable Poincaré sections to reduce the phase space
dimension and help us visualise the phase space.

• For δ = 0 the system is Hamiltonian and we have a first integral. We will use
it to reduce the phase space dimension.

• For δ 6= 0 the system is no longer Hamiltonian. We will take a function that
varies little along the trajectories as an “approximate first integral”, and use
it to visualise the phase space.
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Dynamics for δ = 0

Here the first integral is:

Jc = (Ẋ 2 + Ẏ 2 + Ż 2)− 2Ω(X ,Y ,Z ).

• We fix a Poincaré section x3 = 0 to reduce the system to a three dimensional
phase space. (Taking x3 = 0 is like taking Z = 0).

• We fix the energy level to determine x4 and reduce the system to a two
dimensional phase space that is easy to visualise. (Taking x4(Jc , x) is like
taking Ż (Jc , x)).

• We have taken several initial conditions and computed their successive
images on the Poincaré section.
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Dynamics for δ = 0 (x3 = 0 section)
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Dynamics for δ 6= 0

Here we take an “approximated first integral” :

Jc = (Ẋ 2 + Ẏ 2 + Ż 2)− 2Ω(X ,Y ,Z ) + β(1− µ)
Zr2

r 3
PS

cos2 δ sin δ

• We fix a Poincaré section x3 = 0 to reduce the system to a three dimensional
phase space. (Taking x3 = 0 is similar to taking Z = Z∗).

• We fix Jc to determine x4 and reduce the system to a two dimensional phase
space that is easy to visualise. (Taking x4(Jc , x) is like taking Ż (Jc , x)).

• We have taken several initial conditions and computed their successive
images on the Poincaré section.
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Dynamics for δ = 0.005 (x3 = 0 section)
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Dynamics for δ = 0.01 (x3 = 0 section)
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Station Keeping Strategies Around Equilibria
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Interesting Missions Applications

Observations of the Sun provide information of the geomagnetic storms, as in the
Geostorm Warning Mission.
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Station Keeping for a Solar Sail

We want to design station keeping strategy to maintain the trajectory of a solar
sail close to an unstable equilibrium point.

Instead of using Control Theory Algorithms, we want to use Dynamical System
Tools to find a station keeping algorithm for a Solar Sail.

The main ideas are ...

• To focus on the linear dynamics around an equilibrium point and study how
this one varies when the sail orientation is changed.

• To change the sail orientation (i.e. the phase space) to make the system act
in our favour: keep the trajectory close to a given equilibrium point.
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Station Keeping for a Solar Sail

We focus on the two previous missions, where the equilibrium points are unstable
with two real eigenvalues, λ1 > 0, λ2 < 0, and two pair of complex eigenvalues,
ν1,2 ± iω1,2, with |ν1,2| << |λ1,2|.

• To start we can consider that the dynamics close the equilibrium point is of
the type saddle × centre × centre.

• From now on we describe the trajectory of the sail in three reference planes
defined by each of the eigendirections.

(x1, y1)

(x2, y2)

(x3, y3)

• For small variations of the sail orientation, the equilibrium point, eigenvalues
and eigendirections have a small variation. We will describe the effects of the
changes on the sail orientation on each of these three reference planes.
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Schematic Idea of the Station Keeping Strategy (I)

In the saddle projection of the trajectory:

• When we are close to the equilibrium point, p0, the trajectory escapes along
the unstable direction.

• When we change the sail orientation the position of the equilibrium point is
shifted and its eigendirections vary slightly.
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Schematic Idea of the Station Keeping Strategy (II)

In the saddle projection of the trajectory:

• Now the trajectory will escape along the new unstable direction.

• We want to find a new sail orientation (α, δ) so that the trajectory will come
close to the stable direction of p0.

, /

A. Farrés (IMCCE, UB) Solar Sails SIMBa 32 / 62



Background Dynamics Station Keeping Surfing + realistic model Conclusions

Schematic Idea of the Station Keeping Strategy (III)

In the centre projection of the trajectory:

,

A sequence of changes on the sail orientation implies a sequence of rotations
around different equilibrium points on the centre projection, which can result of an
unbounded growth.
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Schematic idea of the Station Keeping Algorithm

We look at the sails trajectory in the reference system {x0;~v1, ~v2, ~v3, ~v4, ~v5, ~v6}, so
z(t) = x0 + Σi si (t)~vi .

During the station keeping algorithm:

1 when α = α0, δ = δ0:
if |s1(t)| ≥ εmax ⇒ choose new sail

orientation α = α1, δ = δ1.

2 when α = α1, δ = δ1:
if |s1(t)| ≤ εmin ⇒ restore the sail

orientation: α = α0, δ = δ0.

3 Go Back to 1.
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1st Idea for finding αnew , δnew

We will choose a the position of the new equilibrium point (i.e. a new sail
orientation) so that projection of the trajectory on the saddle will come back and
the two centre projections remain bounded ?

emax

emin

d

p0

p1

p0

p1

The constants εmin, εmax and d will depend on the mission requirements and the
dynamics around the equilibrium point.
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Remarks

• We do not know explicitly the position of the equilibrium points p(α, δ). But
we can compute the linear approximation of this function:

p(α, δ) = p(α0, δ0) + Dp(α0, δ0) · (α− α0, δ − δ0)T .

• There are some restrictions of the position of the new equilibria when we
change α and δ. We have 2 unknowns and at least 6 conditions that must be
satisfied.

• We will change the sail orientation so that the position of the new fixed point
is as close as possible to the desired new equilibrium point and in the correct
side in the saddle projection.

• To decide the new sail orientation we will assume that the eigenvalues and
eigendirections do not vary when the sail orientation is changed.
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Results for the Geostorm Mission (RTBPS)

XY and XZ and XYZ Projections
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Results for the Geostorm Mission (RTBPS)

Variation of the sail orientation
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2st Idea for finding αnew , δnew

The computation of variational equations (of suitable order) w.r.t. α and δ gives
explicit expressions for the effect of different orientations (close to the reference
values α = α0, δ = δ0) trajectory.

φt(x0, α0 + ha, δ0 + hd) = φt(x0, α0, δ0) +
∂φ

∂α
(x0, α0, δ0) · ha +

∂φ

∂δ
(x0, α0, δ0) · hd ,

With this we can impose conditions on the “future” of the orbit and find
orientations that fulfil them (or show that the condition is unattainable).

• We will define the parameters εmax , Dtmin and Dtmax that will vary for each
mission application.

• We will find αnew , δnew and dt ∈ [Dtmin,Dtmax ] so that the trajectory is close
to the fixed point.
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Remarks

We use the variational equations up to first order. Hence, we have a linear map
for the different final states.

As before we want the final position to be close to the stable direction, keeping
small the two centre projections.

One can think of different ways to solve this problem. We have seen that the best
results are found if we:

• For each dt ∈ [Dtmin,Dtmax ] we will find αnew and δnew such that s1 = 0 and
(s5, s6) are minimum (i.e. we are close to stable direction and one of the
centres is small).

• We finally choose the dt, αnew and δnew that minimises the other centre
projection (s3, s4).
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Results for the Geostorm Mission (RTBPS)

XY and XZ and XYZ Projections
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Results for the Geostorm Mission (RTBPS)

Variation of the sail orientation
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Surfing Along the Family of Equilibria
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Surfing along the family of equilibria

• Using the same ideas, we can derive strategies to drift along the families of
equilibria in a controlled way (use the invariant manifolds to move in the
phase space).

• Lets assume that we are close to an equilibrium point p0 and we want to
reach the vicinity of another equilibrium point pf . Once we reach pf we want
to be able to remain there for a long time.

• We want to find a sequence of changes on the sail orientation (αi , δi ) (i.e. a
sequence of fixed points pi ) so that the sequence of stable/unstable
directions of pi guide the probe to the final point.

• Note that we also need to take into account the projection of the trajectory
on the centre component.
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Surfing along the family of equilibria

Scheme on the idea to surf along the family of equilibria.

Sadd–1

Sadd–2

Sadd–3

Trajectory

Fixed Points

x0

x1

x2

x3 x8
. . .

trajectory
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Proposed Missions / Toy Missions

We propose a toy mission to surf along the family of equilibria. We take the
Geostorm mission scenario and we want to change the position of the solar sail.

X

Y

Z

Earth - Sun line

L1

SL1

Earth
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Surfing to gain vertical displacement

XY and XZ and XYZ Projections
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Surfing to gain vertical displacement

Variation of the sail orientation along time.
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Towards a More Realistic Model
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Including more realism to the dynamical model

There are several ways to include more realism to the dynamical model. For
example,

• taking a more realistic model for the Solar Sail by including the force
produced by the absorption of the photons, the reflectivity properties of the
sail material, ... .

• taking a more realistic model for the gravitational perturbations by including
the eccentricity in the Earth - Sun system. Or the gravitational attraction of
other bodies, i.e. the Moon, Jupiter, ... .

We have started by considering the eccentricity in the Earth - Sun system and
studied the robustness of our strategies. So we take the Elliptic Restricted Three
Body Problem with a Solar sail as a model.
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The Dynamical Model

We use a Restricted N-Body Problem taking the Sun, Earth, Jupiter and solar sail,
including the solar radiation pressure due to the solar sail.

The equations of motion are,

ẍs =
n∑

i=0

Gmi
xi − xs
r 3
is

+ β
Gm0

r 2
0s

〈~rs ,~n〉2nx ,

ÿs =
n∑

i=0

Gmi
yi − ys
r 3
is

+ β
Gm0

r 2
0s

〈~rs ,~n〉2ny ,

z̈s =
n∑

i=0

Gmi
zi − zs
r 3
is

+ β
Gm0

r 2
0s

〈~rs ,~n〉2nz ,

ẍi =
∑
j 6=i

Gmj
xi − xj
r 3
ij

,

ÿi =
∑
j 6=i

Gmj
yi − yj
r 3
ij

,

z̈i =
∑
j 6=i

Gmj
zi − zj
r 3
ij

,

where (xs , ys , zs) and (xi , yi , zi ) are the position of the solar sail and the planets
respectively, where i = 0, ..., n stands for the Sun, and the other planets.
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Nominal Orbit

To find a good nominal orbit we have implemented a parallel shooting method to
get a natural trajectory in the Sun - Earth - Jupiter model close to the fixed point
in the RTBP Sun - Earth model.
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• The points xi that belong to the nominal orbit must satisfy:

φτ (ti , xi ) = xi+1 for i = 0, . . . , n − 1.

• This leads to solving a non-linear equation with 6n equations and 6n + 6
unknowns.

• We have added six more conditions: we fix the initial positions (the first three
components of x0) and the final ones (the first three components of xn).
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Linear Dynamics

If we examine the eigenvalues of the variational flow along the nominal orbit we
have: two real eigenvalues, λ1 > 0, λ2 < 0, and two pair of complex eigenvalues,
ν1,2 ± iω1,2, with |ν1,2| << |λ1,2|.

• A first good approximation for the linear dynamics along the nominal orbit is:
saddle × centre × centre.

(x1, y1)

(x2, y2)

(x3, y3)

• To describe the trajectory of the sail along the orbit we will use the three
reference planes defined by the corresponding eigenvectors.
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Reference Frame

To avoid numerical problems with the computation of the eigenvectors, we split
the nominal orbit into N revolutions (each revolution = 1 year). For each
revolutions we can compute the Floquet modes and use them as a reference frame
along the orbit.

~v1(t) = e1(τ) exp
(
− τ

T
lnλ1

)
,

~v2(t) = e2(τ) exp
(
− τ

T
lnλ2

)
,

~v3(t) = [cos
(
−Γ1

τ
T

)
e3(τ)− sin

(
−Γ1

τ
T

)
e4(τ)] exp(− τ

T
ln ∆1),

~v4(t) = [sin
(
−Γ1

τ
T

)
e3(τ) + cos

(
−Γ1

τ
T

)
e4(τ)] exp(− τ

T
ln ∆1),

~v5(t) = [cos
(
−Γ2

τ
T

)
e5(τ)− sin

(
−Γ2

τ
T

)
e6(τ)] exp(− τ

T
ln ∆2),

~v6(t) = [sin
(
−Γ2

τ
T

)
e5(τ) + cos

(
−Γ2

τ
T

)
e6(τ)] exp(− τ

T
ln ∆2),

where Γ1,2 = arg(λ3,5).
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Finding αnew , δnew

The computation of variational equations (of suitable order) w.r.t. α and δ gives
explicit expressions for the effect of different orientations (close to the reference
values α = α0, δ = δ0) trajectory.

φt(x0, α0 + ha, δ0 + hd) = φt(x0, α0, δ0) +
∂φ

∂α
(x0, α0, δ0) · ha +

∂φ

∂δ
(x0, α0, δ0) · hd ,

We can impose conditions on the “future” of the orbit and find orientations that
fulfil them (or show that the condition is unattainable).

• For each mission we will define the parameters εmax , Dtmin and Dtmax that
can vary for each mission application.

• We will find αnew , δnew and dt ∈ [Dtmin,Dtmax ] so that the trajectory comes
back close to the nominal orbit.
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Finding αnew , δnew

One can think of different ways to solve this problem. We have seen that the best
results are found if we:

φt(x0, α0 + ha, δ0 + hd) = φt(x0, α0, δ0) +
∂φ

∂α
(x0, α0, δ0) · ha +

∂φ

∂δ
(x0, α0, δ0) · hd ,

• For each dt ∈ [Dtmin,Dtmax ] we will find αnew and δnew such that s1 = 0 and
(s5, s6) are minimum (i.e. we are close to stable direction and one of the
centres is small).

• From all the dt, αnew and δnew we chose the one such that the other centre
projection (s3, s4) is minimised.
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Results for the Geostorm Mission

Sun
Earth

x

y

z

0.01 AU

0.02 AU

L1

ACE

Sail

CME

Mission Parametres:

• In the RTBPS to have the appropriate fixed point we take: β = 0.051689
(a0 ≈ 0.3 mm/s2), α0 = 0.7897◦ and δ0 = 0◦.

• We have taken εmax = 5 · 10−5
AU (the escape distance), dtmin = 2 days and

dtmax = 169 days (the minimum and maximum time between manoeuvres).

• We have done simulations of the station keeping strategy up to 20 years.

A. Farrés (IMCCE, UB) Solar Sails SIMBa 57 / 62



Background Dynamics Station Keeping Surfing + realistic model Conclusions

Results for the Geostorm Mission

XY and XZ and XYZ Projections in a rotating reference system
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Results for the Geostorm Mission

Variation of the Sail Orientation
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• In average we have a variation α ≈ 1◦ and δ ≈ 0◦.

• The trajectory takes about 100 days to escape.

• Two quick manoeuvres every 2 days are required each time we want to bring
back the trajectory.

A. Farrés (IMCCE, UB) Solar Sails SIMBa 59 / 62



Background Dynamics Station Keeping Surfing + realistic model Conclusions

Conclusions & Future Work
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Conclusion:
• We have described the dynamics of a solar sail in a Eath - Sun RTBP with a

solar sail.

• We have derived station keeping strategies for a solar sail around an
equilibrium point.

• We have extended these station keeping strategies to deal with a more more
realistic model and applied them to the GeoStorm mission.

• Notice that these strategies do not require previous planning as the decisions
are taken depending on the sails position at each time.

Future Work:
• Test the robustness of these strategies when different sources of error occur

during the simulations (position and velocity determination or solar sail
orientation).

• Include a more realistic model for the performance of the sail.
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