From the Earth to the Moon: the weak stability boundary and invariant manifolds

Priscilla A. Sousa Silva

MAiA-UB

Seminari Informal de Matemàtiques de Barcelona

05-06-2012

P.A. Sousa Silva (MAiA-UB)

The WSB and invariant manifolds

05-06-12 1 / 25

< = > < = > < = > < = >

Summary

Introduction

5 Understanding the algorithmic WSB

Final Remarks 6

990

< = > < = > < = > < = >

Introduction

Motivation

- Traditional techniques in astronautics (Hohmann transfer, bi-elliptic transfer)
- Hohmann to Mars and Venus: nearly the smallest possible amount of fuel, slow (8 months)
 Decades AND prohibitive amount of fuel to reach outer planets

New challenges require new techniques!

 Patched conics: gravity assisted maneuvers to save fuel (swingby or gravitational slingshot)

Example: Cassini Mission, Oct 15, 1997 - Saturn multi-moon orbiter

Introduction

Motivation

Or...

Take advantage of the fundamental dynamical structure of more realistic (N-body) models!

Example: Genesis Mission, Aug 8, 2001 - approximate heteroclinic return orbit

Introduction

Context

- Space mission projects based many-body dynamics: particularly Sun-Earth-Moon-Sc.
- WSB concept proposed heuristically by E. Belbruno (1987) related to Earth-Moon transfers with ballistic capture.
- Employed successfully in the rescue of the Japanese spacecraft Hiten in 1991 (Belbruno and Miller, 1990).

"Regions in the phase space where the perturbative effects of the Earth-Moon-Sun acting on the spacecraft tend to balance". (Belbruno and Miller, 1993)

"A location near the Moon where the spacecraft lies in the transition between ballistic capture and ejection". (Belbruno *et al.*, 2008)

But... Precise definition? Why does it work? How to find WSB trajectories?

The Restricted Three-body Problem

Equations of motion of *P*₃

$$\begin{split} \ddot{x} - 2\dot{y} &= \Omega_x, \\ \ddot{y} + 2\dot{x} &= \Omega_y, \end{split} \qquad \qquad \text{with} \qquad \Omega = \frac{1}{2}(x^2 + y^2) + \frac{1 - \mu}{r_1} + \frac{\mu}{r_2} + \frac{\mu(1 - \mu)}{2}, \\ r_1^2 &= (x - \mu)^2 + y^2, \text{ and } r_2^2 = (x + 1 - \mu)^2 + y^2. \end{split}$$

■ The integral of motion

Equilibrium points

- *L*_{1,2,3}: collinear points, saddle-center.
- $L_{4,5}$: triangular points, stable if $m_1/m_2 > 24.96$.
- The Jacobi constant values evaluated at L_K are denoted by C_k , k = 1, 2, 3, 4, 5.

< = > < = > < = > < = >

The Restricted Three-body Problem

 $\blacksquare \text{ Hill regions, } \mathcal{H}$

- Accessible areas for each C: $\mathcal{H}(\mu, C) = \{(x, y) | \Omega(x, y) \ge C/2\}$
- Bounded by the zero-velocity curves

For a given μ , there are five different configurations for \mathcal{H} :

Case 1: $C > C_1$; Case 2: $C_1 > C > C_2$; Case 3: $C_2 > C > C_3$; Case 4: $C_3 > C > C_4 = C_5$; Case 5: $C_4 = C_5 > C$ - motion over the entire x-y plane is possible.

イロト イポト イヨト イヨト

The Restricted Three-body Problem

Lyapunov Orbits

- Types of solution around the equilibria: periodic, transit, asymptotic and non-transit.
- Stable manifold (green): $W^{s}(\Gamma) = \{ \mathbf{x} \in \mathbb{R}^{4} : \phi(\mathbf{x}, t) \rightarrow \Gamma, t \rightarrow \infty \};$
- Unstable manifold (red): $W^{u}(\Gamma) = \{ \mathbf{x} \in \mathbb{R}^{4} : \phi(\mathbf{x}, t) \to \Gamma, t \to -\infty \}.$

 Moser (1958) and Conley (1968,1969): existence of unstable periodic orbits around the collinear equilibria.

 W^s and W^u are locally homeomorphic to 2D cylinders and act as separatrices of the phase space.

The algorithmic WSB: capture

Definition (Permanent capture: geometric concept)

 P_3 is permanently captured into the P_1 - P_2 system in forward (backward) time if $|\mathbf{q}|$ is bounded as $t \to \infty$ ($t \to -\infty$), and $|\mathbf{q}| \to \infty$ when $t \to -\infty$ ($t \to \infty$).

Definition (Temporary capture: geometric concept)

 P_3 has temporary capture at $t = t^*, |t^*| < \infty$, if $|q(t^*)| < \infty$ and $\lim_{t \to \pm \infty} |q(t)| = \infty$.

But...

Definition (Ballistic capture: analytic concept - see Belbruno (2004))

 P_3 is ballistically captured by P_2 at time $t = t_c$ if, for a solution $\varphi(t) = (x(t), y(t), \dot{x}(t), \dot{y}(t))$ of the R3BP, $h_K(\varphi(t_c)) \leq 0$, where h_K is the two-body energy of P_3 with respect to P_2 .

Recall: $h_{\mathcal{K}} = \frac{1}{2}(\dot{\tilde{x}}^2 + \dot{\tilde{y}}^2) - \frac{Gm_2}{\tilde{r}_2}$, where $(\tilde{x}, \tilde{y}, \dot{\tilde{x}}, \dot{\tilde{y}})$ is the state of P_3 in an inertial reference frame with origin in P_2 .

Note: usage of *ballistic* not unique! e.g., a situation in which no propulsion is needed to achieve temporary capture - see Koon et al (2001); Marsden and Ross (2005).

Weak Stability Boundary Algorithmically Defined

Construction

García and Gómez (2007): Consider a radial segment $I(\theta)$ departing from the smaller primary P_2 and making an angle θ with the x-axis. Take trajectories for P_3 , starting on $I(\theta)$ such that:

- P_3 starts its motion on the periapsis of an osculating ellipse around P_2 $(r_2 = a(1 - e)).$
- The eccentricity of the initial Keplerian motion is kept constant along $I(\theta)$.
- The initial velocity vector of the trajectory is perpendicular to $l(\theta)$. The modulus of the initial velocity is $\nu^2 = \mu(1 + e)/r_2$.
- The initial two-body Kepler energy of P₃ w.r.t. P₂ is negative, i.e., e ∈ [0, 1), since the Kepler energy computed at the periapsis is h_K = µ(e − 1)/(2r₂).

Initial conditions for the motion

Clockwise (positive) osculating motions

 $\begin{aligned} x &= -1 + \mu + r_2 \cos \theta, & y &= r_2 \sin \theta, \\ \dot{x} &= r_2 \sin \theta - \nu \sin \theta, & \dot{y} &= -r_2 \cos \theta + \nu \cos \theta, \end{aligned}$

Counterclockwise (negative) osculating motions

 $\begin{aligned} x &= -1 + \mu + r_2 \cos \theta, & y &= r_2 \sin \theta, \\ \dot{x} &= r_2 \sin \theta + \nu \sin \theta, & \dot{y} &= -r_2 \cos \theta - \nu \cos \theta. \end{aligned}$

<ロ> <用> <用> < => < => < => < => <000</p>

Weak Stability Boundary Algorithmically Defined

Stability classification

Definition (Stability)

The motion of P_3 is said to be stable if after leaving $I(\theta)$ it makes a full cycle about P_2 without going around P_1 and returns to $I(\theta)$ with $h_K < 0$. The motion is unstable otherwise.

Definition (Algorithmic WSB)

The Weak Stability Boundary is given by the set $\partial W = \{r^* | \theta \in [0, 2\pi), e \in [0, 1)\}$, where $r^*(\theta, e)$ are the points along the radial line $l(\theta)$ for which there is a change of stability. The subset obtained by fixing the eccentricity e of the osculating ellipse is $\partial W^e = \{r^* | \theta \in [0, 2\pi), e = \text{constant}\}$.

Grid dependence! Integration time dependence!

P.A. Sousa Silva (MAiA-UB)

The WSB and invariant manifolds

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Inner Transfers: within the restricted three-body problem

• Scheme to design low energy "periodic" Earth-to-Moon transfers.

(i) the cost per cycle should be as small as is practical;

(ii) control and stability problems should be as easy as possible;

(iii) as much flexibility should be build into the scheme as possible.

Conley C (1968) Low energy transit orbits in the restricted three-body problem. SIAM Journal of Applied Mathematics, v. 16, p. 732-746

Impossibility!!!

McGehee R (1969) Some homoclinic orbits for the restricted three-body problem. PhD thesis, University of Wisconsin, Madison.

Outer transfers

■ Four body models required to obtain assist by the Sun!

Patched Three-Body approach

 Sun-Earth-Moon system approximated by: Sun-Earth-SC (SE ⇔ ⊙) + Earth-Moon-SC (EM ⇔ ⊕).
 Complete transfer orbit o_c (departing from a LEO o_i and arriving at a LLO o_f): non-transit orbit o_n associated to L[⊙]₁ or L[⊙]₂ + transit orbit o_t associated to L[⊕]₂.
 Total energy: Δv₁ to leave o_i + Δv₂ at patching point + Δv₃ to enter o_f.

Differential correction needed to obtain final solution!

イロト イロト イヨト イヨト

Patched Three-Body approach

■ Complete orbit (o_c)

05-06-12 14 / 25

5900

Focus on the Earth-Moon leg

■ Hiten-like??? Ballistic capture??? But using manifold structure!

- Koon W, Lo M, Marsden J, Ross S (2000) Shoot the Moon. In: Proceedings of AAS/AIAA Space Flight Mechanics Meeting, AAS 00-166
- Koon W, Lo M, Marsden J, Ross S (2001) Low energy transfer to the Moon. Celestial Mechanics and Dynamical Astronomy 81, p. 63-73
- Sousa Silva P (2011) The algorithmic WSB in Earth-to-Moon mission design: dynamical aspects and applicability. PhD thesis, Instituto Tecnológico de Aeronáutica - São José dos Campos

Implementation of the algorithmic WSB

P.A. Sousa Silva (MAiA-UB)

The WSB and invariant manifolds

05-06-12 16 / 25

Preliminary checks: the energy

High excentricity needed to allow low capture orbits!

$$C(r_2, \theta, e) = (1 - \mu) + \frac{2\mu}{r_2} - 2(1 - \mu)r_2\cos(\theta) + r_2^2 + \frac{2(1 - \mu)}{\sqrt{1 - 2r_2\cos(\theta) + r_2^2}} - \left[r_2 \mp \sqrt{\frac{\mu(1 + e)}{r_2}}\right]^2$$

Energy gap between + and - sets of initial conditions: $\Delta C(r_2, \theta, e) = 4\sqrt{\mu(1+e)r_2}$.

Checks for t < 0: applicability

Checks for t > 0: stability

Checks for t < 0 + checks for t > 0 provide Earth-to-Moon transfers (within the Patched Three-body approach) with $\Delta v = 0$ at patching section!

WSB corresponding to invariant manifols?

YES!

P.A. Sousa Silva (MAiA-UB)

05-06-12 21 / 25

Understanding the algorithmic WSB

WSB corresponding to invariant manifols?

P.A. Sousa Silva (MAiA-UB)

22 / 25

5900

WSB corresponding to invariant manifols: up to which extent?

WSB corresponding to invariant manifols: up to which extent?

P.A. Sousa Silva (MAiA-UB)

05-06-12 24 / 25

Final Remarks

- Need to develop new strategies for mission design ⇒ use the rich dynamical structure in systems of many bodies
- Q. Why to study WSB-like approaches if we have manifold structure?
 - A. Manifold structure not always available!
 - A. Manifold structure too complicated to be easily obtained!
- The algorithmic WSB: needs revision... Q. What has been done is this direction?
- Still... Provides (under some assumptions!) adequate initial conditions for Earth-to-Moon transfer orbits in the patched-three body approach with ZERO Δv at patching!

イロト イポト イヨト イヨト