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o Paley-Wiener space,
PW2 = {f € PR supp(f) € [, 7]},

e A ={\,}, C Ris a sampling sequence if there exist constants
0 < A < B such that

AlfIE < Y IF WP < BIFIB,  Vf € PWE, .

e A = {)\,}, C Ris an interpolating sequence if for all
{en}, € 2 3f € PW]__, such that

fn) =cn Vn
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Forallf € PW[Z_

)

Zf s1n7r sinm(x —n)

nez x B n)
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S nd nterpolation in PWE

Theorem (Whittaker-Shannon-Kotelnikov, 1915-1949-1933)
Forallf € PW{

Zf 5“”; — n)n) '

nez

o A =7 is sampling and interpolating for PW[Z_7T =

@ We can even take A = {\,}, with sup, |\, —n| < ¢ (Sharp
d=1/4).

o General cases: PW2, with E C R™ bounded set. Landau (in

1967) proved necessary conditions for interpolation or sampling
in terms of Beurling-Landau densities.
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n

Pu = {q =Y ad, ze Sl}.
k=0

@ g € P, play the role of bandlimited functions with bandwidth n.

@ Sampling and Interpolation for these spaces: instead of
sequences we shall take families Z = {Z(n)},,
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P = {C]:Zakzk, ZESI}.

k=0

@ g € P, play the role of bandlimited functions with bandwidth n.
@ Sampling and Interpolation for these spaces: instead of

sequences we shall take families Z = {Z(n)},,

Paley-Wiener setting | The compact setting
A = {\,}, separated: Z = {zy} separated
0 :=1inf,p [ Ay — Am| > 0 | d(zjs 20k) > n, Vj # kVn
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In the Paley-Wiener setting, A is sampling:
”f”% = Z lf()‘n)|27 vf € PW[Z—ﬂ',ﬂ']'
n

In the compact setting, Z is Marcinkiewicz-Zygmund (M-Z) (or
sampling):

27 Mp
| latePas = 23 ata)P g e P
j=1
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Let Z be a separated family, i.e.

C
W ) = e Vj # k,n € N.
If
1
D (Z —
(2) > o

then Z is a M-Z family. Conversely, if Z is M-Z then D~ (Z) > ZL

™

@ J. Marzo proved necessary density conditions for S”.
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Our setting



© (M, g) is a smooth compact Riemannian manifold of dimension
m > 2 without boundary.

© The Laplacian on M is defined as:
1 3
Ag(f) = \/ﬁ Zax,- Z V818" Ouf
i J

© A, has discrete spectrum
0<AN<N<... -

@ L?(M) decomposes in a direct sum of real functions ¢; € C*(M)
S.t. Ag¢i = —)\l-zgzﬁ,-.
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For L > 1, consider the spaces

ki
E, = {f eLXM): f=) Biti, My < L}.

i=1

Motivation: The space E; behaves like a space of polynomials of
degree less than L.
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For L > 1, consider the spaces

ki
EL= {f eLXM): f=> Bidi, My SL}.

i=1

Motivation: The space E; behaves like a space of polynomials of
degree less than L.
Examples.

@ M =S": ¢, = cos(nh), sin(nf) and E, is the space of
polynomials of degree less than n.

Q@ M =S" (m > 1): EL is the space of spherical harmonics.

Bernstein inequality for E; :

IVTelloo S Ellfellocs  Wfe € Er-
Observation: We shall work with balls of radius r/L.
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The reproducing kernel for Ey is

ki
Ki(zow) =) ¢i(2)gi(w) = Y 6i(z)di(w).
i=1
Hormander (1968) has proved:

e Ki(z,2) = Gl + O(L™ ).
@ kp =D, L" +0(L" "),k = dim(Er) = # {\ < L}.
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The reproducing kernel for Ey is

ki,
Ki(zw) =Y ¢i(2)gi(w) = D> dil2)di(w).
i=1

Hormander (1968) has proved:
e Ki(z,2) = C, L™ +0O(L" ).
e kp = D,L" + O(L™ "), ky = dim(EL) = # {\ < L}.

For L big enough:
“ kL ~ "
@ |Kei(z )3 = Ki(z,2) = L™ ~ k.
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Interpolating and M-Z families on
compact manifolds



Z ={2(L)},>, be a triangular family in M with Z(L) = {z1;}7,.

Z is a Marcinkiewicz-Zygmund (M-Z) family, if 3C > 0 s.t.
VL > 1, T € EL

© % h@iPs [ v g S il

z;€Z(L) 2;€Z(L)
j
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Z ={Z(L)},>, be a triangular family in M with Z(L) = {zLj};.":LI.

Z is a Marcinkiewicz-Zygmund (M-Z) family, if 3C > 0 s.t.
VL > 1, T € EL

© % h@iPs [ v g S il

z;€Z(L) 2;€Z(L)
j

Equivalently, Z is M-Z iff {K; (z,zzj)/||K.(:, z1;)||} form a frame, i.e.

3= >

z2j€Z(L)

Ki (- 215) ) ’

K1 (21, 21)

{;
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One inequality in M-Z is “easy”: usually called Plancherel-Polya
Theorem.

Theorem (J. Ortega-Cerda, B. Pridhnani, 2010)

Z is a finite union of uniformly separated families iff 3C > 0 s.t.
VL > 1andf; € ErL

o lh@P ¢ [ ePave.
j=1

Z is uniformly separated if there exists a ¢ > 0 s.t. forall L > 1

€ .
dm (21, 20k) > TR # k.

For M-Z families we need to study:

/ IfL(€) de ZlfL 21|
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Z={Z(L)} 1>1 (mr < ki) is an interpolating family if for all
c={cLity 1<jcm, S

sup . Z lerj]? < oo,
L>1k

there exists a {fr};, fi € EL s.t. supp> ||fill, < o0 and fi.(z1;) = cij
(1<j<m)
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Z ={Z(L)};> (my < ki) is an interpolating family if for all
c={cLity 1<jcm, S
my,

1 2
sup — cri|” < o0
LZpl kL ; | ]| 9

there exists a {fr};, fi € EL s.t. supp> ||fill, < o0 and fi.(z1;) = cij
(1<j<m)

o Z interpolating = Z is uniformly separated, i.e. there exists a
€>0s.t forall L>1

€ .
dm(zrjs k) > 7o £ k.

o Z separated enough = Z interpolating.
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The Beurling-Landau density



Let 1, and o be the normalized counting/volume measure, i.e.
1
dup = . Z 0y, do = dV/vol(M).
L 2 €Z(L)

The upper and lower density are:

B , j(B(E,R/L))
D*(2) = limsup (hg‘; P (?5’4‘ W)) ’

(2 =y (e (s S 7))
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Let p;, and o be the normalized counting/volume measure, i.e.
1
dup = Y Z 0y, do = dV/vol(M).
zj€Z(L)
The upper and lower density are:

B , j(B(E,R/L))
D*(2) = limsup (th; P (?5’4‘ W)) ’

B(&,R/L
D (2) = liminf ( liminf ( min “eBER/DIYY
R—oo \ L—oo \éeM o(B(&,R/L))
Essentially, in the density we are looking at

#(Z(L) N BER/L)
Rm
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If Z is a M-Z family then there exists a unif. sep. M-Z family ZCZ
s.1.

D (2)>1.

If Z is an interpolating family then it is unif. sep. and

DT (2) < 1.
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LetA C M. Ky : Er — Ep is defined as

Kafe(z) = /A Koz, E)(€)V(©),

Ka: EL — L*(M) — Ey
fi — xaft — P, (xaft)

K4 is self-adjoint = Eigenvalues of 4 are real and E; has an
orthonormal basis of eigenvectors of /Cy4.
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@ A localization property gives an estimate of #(Z(L) N A) in
terms of the “big eigenvalues” of /Cy.
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@ A localization property gives an estimate of #(Z(L) N A) in
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@ Relation of the eigenvalues of C4 with tr(JC4) and tr(JC4 o /Cy).
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@ A localization property gives an estimate of #(Z(L) N A) in
terms of the “big eigenvalues” of ICy.

@ Relation of the eigenvalues of C4 with tr(JC4) and tr(JC4 o /Cy).

@ Trace estimates of [Cy and ICy o Ky4.

Notation. Eigenvalues of 4, (AL = B(&,R/L)).

1>A>... >\ >0.
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General fact: Let 7 be an operator with eigenvalues
O<A<hn<... < <land

du = Z (5)\1..
i=1
A
n 1 1 e T S
tr(T) = > A\ :/ xdp(x), o B
i=1 0 K i
n 1 " l'
w(r?) = >0 = [ 2t S
i=1 0 :" ,"
1 l’ :'
BN >} = / () S
2 ,'~ - s
= [ ponto), A
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In the M-Z case (A, = B(&,R/L)):

#(Z(L)NAL) “>"# {)\JL >t > w(Ky,) — tr(Ka,) _1tr_(l,CyAL ° ICAL)‘
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In the M-Z case (A, = B(&,R/L)):

(’CAL) - tr(ICAL o ICAL)
1—7 '

£ (Z(L)NAL) > " (M > 7} > (k) — &

tr(fCy,) = N Ki(z,2)dV(z) = kLVOI(fO(f(’Af)/L)) * O(LL:)'

Recall that density is

L#(Z(L)NB(&,R/L)) (2 #(Z(L) mB(g,R/L))) |

VI(BER/L) R
vol(M)
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In the M-Z case (A, = B(&,R/L)):

(’CAL) - tr(KAL o ICAL)
1—7 '

£ (Z(L)NAL) > " (M > 7} > (k) — &

Recall that density is

L#(Z(L)NB(&,R/L)) (2 #(Z(L) nB(g,R/L))) |

vol(B(§,R/L)) Rm
vol(M)
w(Ka,) — tr(K2 ) = /A " IK2(2, w)[2dV (w)dV (2).
LX L

We need limsup; . tr(Ky,) — tr(K3 ) = o(R™).
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If the kernel has “good” bounds, i.e.

tim Koo, &)Pav(z) < —

—— a€(0,1),r>1,
L—oo Ju\B(e.r/L) (1+r)

then everything works! (Maybe not true for all manifolds).

Examples: Compact Two-point homogeneous spaces: spheres,
projective spaces.
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For the general case: modify the concentration operator using “better”

kernels.
Bi(z,w Zﬁ < ) ¢i(w),

and consider the transform from L?(M) — Ey

B (f)(2) = /M B (e, w)f (w)dV (w),

Nice bounds for these kernels
(due to F. Filbir and H.
Mhaskar).
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TafL = Br(xa - BL)(f1)

Landau’s scheme used KCaf;, = Pg, (xa - Pe,)(f)-

Intuition: This operator is a smooth version of the classical
concentration operator.
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TafL = Br(xa - BL)(f1)
Landau’s scheme used KCaf;, = Pg, (xa - Pe,)(f)-
Intuition: This operator is a smooth version of the classical
concentration operator.

Now the trace estimates become:

limsup (te(75,) — tr(T5, 0 T5,)) < Ci(1 — (1 — €)™R™ + R,

L—oo

where C; (indep. of €) and C, are indep of R.

All error terms can be fixed.
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