Some Generalized Fermat-type Equations via Q-curves and Modularity.

Nuno Freitas

Universitat de Barcelona

22 October 2012

Advisor: Luis Dieulefait

ヘロト ヘアト ヘヨト ヘ

글 > 글

- Introduction to the modular approach.
- 2 Multi-Frey technique to equations of signature (5, 5, p)
- Solution Frey curves for equations of signature (r, r, p) for $r \ge 7$
- Modularity and Irreducibility of Galois representations attached to certain elliptic curves.
- Solution Applications to r = 13 and r = 7
- Onclusions and Contributions

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

1) Introduction to the modular approach.

ヘロト 人間 とくほとくほとう

Everything started in the 17th century in a small margin...saying

Theorem (Fermat's Last Theorem)

Let n > 2 be an integer. Then, the equation $x^n + y^n = z^n$ has no solutions (a, b, c) such that $abc \neq 0$.

Brief story of the Proof: Assume (a, b, c) is such that $abc \neq 0$ and $a^{p} + b^{p} = c^{p}$ for a prime $p \ge 5$.

 $\bullet\,$ In 1984 Frey considered the elliptic curve over \mathbb{Q}

$$E = E_{(a,b,c)} : y^2 = (x - a^p)(x + b^p).$$

• In the following years Frey, Hellegouarch, Serre, Mazur and Ribet proved that *E* has unusual properties.

ヘロン 人間 とくほ とくほ とう

Everything started in the 17th century in a small margin...saying

Theorem (Fermat's Last Theorem)

Let n > 2 be an integer. Then, the equation $x^n + y^n = z^n$ has no solutions (a, b, c) such that $abc \neq 0$.

Brief story of the Proof: Assume (a, b, c) is such that $abc \neq 0$ and $a^{p} + b^{p} = c^{p}$ for a prime $p \geq 5$.

• In 1984 Frey considered the elliptic curve over $\mathbb Q$

$$E = E_{(a,b,c)} : y^2 = (x - a^p)(x + b^p).$$

• In the following years Frey, Hellegouarch, Serre, Mazur and Ribet proved that *E* has unusual properties.

ヘロン 人間 とくほ とくほ とう

Everything started in the 17th century in a small margin...saying

Theorem (Fermat's Last Theorem)

Let n > 2 be an integer. Then, the equation $x^n + y^n = z^n$ has no solutions (a, b, c) such that $abc \neq 0$.

Brief story of the Proof: Assume (a, b, c) is such that $abc \neq 0$ and $a^{p} + b^{p} = c^{p}$ for a prime $p \geq 5$.

• In 1984 Frey considered the elliptic curve over $\mathbb Q$

$$E = E_{(a,b,c)} : y^2 = (x - a^p)(x + b^p).$$

 In the following years Frey, Hellegouarch, Serre, Mazur and Ribet proved that *E* has unusual properties.

ヘロア 人間 アメヨア 人口 ア

- In 1994 Wiles' proved another property: *E* is modular.
- Conclusion: *E* has so many remarkable properties that does not exist.
- Thus (*a*, *b*, *c*) does not exist.

This strategy (that I will make more precise in a moment!) is now baptized as **the modular approach to Diophantine equations** and it has been extended by several mathematicians to attack other equations.

・ 同 ト ・ ヨ ト ・ ヨ ト

- In 1994 Wiles' proved another property: *E* is modular.
- Conclusion: *E* has so many remarkable properties that does not exist.
- Thus (*a*, *b*, *c*) does not exist.

This strategy (that I will make more precise in a moment!) is now baptized as **the modular approach to Diophantine equations** and it has been extended by several mathematicians to attack other equations.

A (1) > A (2) > A

- In 1994 Wiles' proved another property: *E* is modular.
- Conclusion: *E* has so many remarkable properties that does not exist.
- Thus (*a*, *b*, *c*) does not exist.

This strategy (that I will make more precise in a moment!) is now baptized as **the modular approach to Diophantine equations** and it has been extended by several mathematicians to attack other equations.

ヘロン 人間 とくほ とくほ とう

Some generalizations of the Frey curves for Fermat-type equations:

(1) Darmon-Merel (1997):

 $x^{p} + y^{p} = z^{2}$ and $x^{p} + y^{p} = z^{3}$ for $p \ge 3$ Non semistable Frey curves over \mathbb{Q} .

- (2) **Ellenberg (2004):** $x^2 + y^4 = z^p$ for $p \ge 211$ Frey curves over number fields that are \mathbb{Q} -curves.
- (3) Jarvis-Meekin (2004): $x^{p} + y^{p} = z^{p}$ for p > 3 over $\mathbb{Q}(\sqrt{2})$ Semistable Frey curves over a totally real field
- (4) Bennett-Chen (2011):

 $x^2 + y^6 = z^p$ for $p \ge 3$

Siksek multi-Frey technique with one Frey curve over $\mathbb Q$ and one Frey $\mathbb Q\text{-}curve.$

ヘロン 人間 とくほとく ほとう

1

- (1) **Construction of a Frey curve:** Attach an elliptic curve *E* over a number field *K* to a putative solution of the equation.
- (2) **Modularity/Level Lowering:** Prove modularity of *E* and irreducibility of $\bar{\rho}_{E,p}$ in order to conclude via level lowering results, that the representation $\bar{\rho}_{E,p}$ corresponds to a (Hilbert) newform whose level is almost independent of the choice of the solution;
- (3) **Contradiction:** Contradict the previous step by showing that among the (Hilbert) newforms on the predicted spaces, none of them corresponds to $\bar{\rho}_{E,p}$.

ヘロン ヘアン ヘビン ヘビン

- (1) **Construction of a Frey curve:** Attach an elliptic curve *E* over a number field *K* to a putative solution of the equation.
- (2) **Modularity/Level Lowering:** Prove modularity of *E* and irreducibility of $\bar{\rho}_{E,p}$ in order to conclude via level lowering results, that the representation $\bar{\rho}_{E,p}$ corresponds to a (Hilbert) newform whose level is almost independent of the choice of the solution;
- (3) **Contradiction:** Contradict the previous step by showing that among the (Hilbert) newforms on the predicted spaces, none of them corresponds to $\bar{\rho}_{E,p}$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

- (1) **Construction of a Frey curve:** Attach an elliptic curve E over a number field K to a putative solution of the equation.
- (2) **Modularity/Level Lowering:** Prove modularity of *E* and irreducibility of $\bar{\rho}_{E,p}$ in order to conclude via level lowering results, that the representation $\bar{\rho}_{E,p}$ corresponds to a (Hilbert) newform whose level is almost independent of the choice of the solution;
- (3) **Contradiction:** Contradict the previous step by showing that among the (Hilbert) newforms on the predicted spaces, none of them corresponds to $\bar{\rho}_{E,p}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- (1) **Construction of a Frey curve:** Attach an elliptic curve E over a number field K to a putative solution of the equation.
- (2) **Modularity/Level Lowering:** Prove modularity of *E* and irreducibility of $\bar{\rho}_{E,p}$ in order to conclude via level lowering results, that the representation $\bar{\rho}_{E,p}$ corresponds to a (Hilbert) newform whose level is almost independent of the choice of the solution;
- (3) **Contradiction:** Contradict the previous step by showing that among the (Hilbert) newforms on the predicted spaces, none of them corresponds to $\bar{\rho}_{E,p}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

We are interested in the Generalized Fermat equation:

$$Ax^{p}+By^{q}=Cz^{r},$$

where

• A, B, C pairwise coprime integers and $ABC \neq 0$

•
$$1/p + 1/q + 1/r < 1$$

The triple (p, q, r) is called the **signature** of the equation.

Theorem (Darmon-Granville)

Let $A, B, C \in \mathbb{Z}$ be pairwise coprime. Fix (p, q, r) such that 1/p + 1/q + 1/r < 1. Then $Aa^p + Bb^q = Cc^r$ has only a finite number of solutions satisfying gcd(a, b, c) = 1.

<ロ> (四) (四) (三) (三) (三) (三)

We are interested in the Generalized Fermat equation:

$$Ax^{p}+By^{q}=Cz^{r},$$

where

• A, B, C pairwise coprime integers and $ABC \neq 0$

The triple (p, q, r) is called the **signature** of the equation.

Theorem (Darmon-Granville)

Let $A, B, C \in \mathbb{Z}$ be pairwise coprime. Fix (p, q, r) such that 1/p + 1/q + 1/r < 1. Then $Aa^p + Bb^q = Cc^r$ has only a finite number of solutions satisfying gcd(a, b, c) = 1.

ヘロン 人間 とくほ とくほ とう

Introduction

But more is conjectured

Conjecture

Let $A, B, C \in \mathbb{Z}$ be fixed and pairwise coprime. There is only a finite number of sextuples (a, b, c, p, q, r) satisfying:

- $p, q, r \in \mathbb{Z}$ primes such that 1/p + 1/q + 1/r < 1,
- $(a,b,c) \in (\mathbb{Z} \setminus \{0\})^3$ and gcd(a,b,c) = 1,
- $Aa^p + Bb^q = Cc^r$.

Rmk: Solutions like $1^p + 2^3 = 3^2$ are counted only once.

Regarding this conjecture, in what follows we will:

- Provide more evidence to the conjecture for signatures (5,5,p), (7,7,p), (13,13,p).
- Describe a general method to attack some equations of signature (r, r, p) for all primes r ≥ 7.

イロン 不良 とくほう 不良 とうほ

Introduction

But more is conjectured

Conjecture

Let $A, B, C \in \mathbb{Z}$ be fixed and pairwise coprime. There is only a finite number of sextuples (a, b, c, p, q, r) satisfying:

- $p, q, r \in \mathbb{Z}$ primes such that 1/p + 1/q + 1/r < 1,
- $(a,b,c) \in (\mathbb{Z} \setminus \{0\})^3$ and gcd(a,b,c) = 1,

•
$$Aa^p + Bb^q = Cc^r$$
.

Rmk: Solutions like $1^p + 2^3 = 3^2$ are counted only once.

Regarding this conjecture, in what follows we will:

- Provide more evidence to the conjecture for signatures (5, 5, p), (7, 7, p), (13, 13, p).
- Describe a general method to attack some equations of signature (*r*, *r*, *p*) for all primes *r* ≥ 7.

イロン 不良 とくほう 不良 とうほ

2) Multi-Frey technique to equations of signature (5, 5, p)

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Theorem (Chap. 2)

Let β be an integer divisible only by primes $\ell \not\equiv 1 \pmod{5}$. Suppose that $p \equiv 1 \pmod{4}$ or $p \equiv \pm 1 \pmod{5}$. Then,

- (A) If p > 13, the equation $x^5 + y^5 = 2\beta z^p$ has no solutions (a, b, c) such that |abc| > 1 and (a, b) = 1.
- (*B*) If p > 73, the equation $x^5 + y^5 = 3\beta z^p$ has no solutions (a, b, c) such that |abc| > 1 and (a, b) = 1.

Note that over $\mathbb{Q}(\sqrt{5})$ we have

$$x^5 + y^5 = (x + y)\phi(x, y) = (x + y)\phi_1(x, y)\phi_2(x, y),$$

where

$$\phi_1(x,y) = x^2 + \omega xy + y^2$$
, and $\phi_2(x,y) = x^2 + \bar{\omega}xy + y^2$
 $\omega = \frac{-1 + \sqrt{5}}{2}$ and $\bar{\omega} = \frac{-1 - \sqrt{5}}{2}$.

Theorem (Chap. 2)

Let β be an integer divisible only by primes $\ell \not\equiv 1 \pmod{5}$. Suppose that $p \equiv 1 \pmod{4}$ or $p \equiv \pm 1 \pmod{5}$. Then,

- (A) If p > 13, the equation $x^5 + y^5 = 2\beta z^p$ has no solutions (a, b, c) such that |abc| > 1 and (a, b) = 1.
- (*B*) If p > 73, the equation $x^5 + y^5 = 3\beta z^p$ has no solutions (a, b, c) such that |abc| > 1 and (a, b) = 1.

Note that over $\mathbb{Q}(\sqrt{5})$ we have

$$x^5 + y^5 = (x + y)\phi(x, y) = (x + y)\phi_1(x, y)\phi_2(x, y),$$

where

$$\phi_1(x,y) = x^2 + \omega xy + y^2, \quad \text{and} \quad \phi_2(x,y) = x^2 + \bar{\omega} xy + y^2$$
$$\omega = \frac{-1 + \sqrt{5}}{2} \quad \text{and} \ \bar{\omega} = \frac{-1 - \sqrt{5}}{2}.$$

Let (a, b, c) be a solution to $x^5 + y^5 = dz^p$ such that (a, b) = 1. Hence

• $\phi(a,b) = c_0^p$ and $\phi_1(a,b) = c_1^p$ and $d \mid a+b$ or,

•
$$\phi(a,b) = 5c_0^p$$
 and $\phi_1(a,b) = \sqrt{5}c_1^p$ and $d \mid a+b$

where $c_0 \mid c$ and c_1 divide c in $\mathbb{Q}(\sqrt{5})$.

Definition

Given (a, b, c) as above define the Frey-curve over $\mathbb{Q}(\sqrt{5})$

$$E_{(a,b)}: y^2 = x^3 + 2(a+b)x^2 - \bar{\omega}\phi_1(a,b)x.$$

Its discriminant is

$$\Xi)=2^6ar{\omega}\phi\phi_1=egin{cases} 2^6ar{\omega}(c_0c_1)^p & ext{if } 5
otin a+b,\ 2^6ar{\omega}5\sqrt{5}(c_0c_1)^p & ext{if } 5\mid a+b, \end{cases}$$

ヘロト 人間 とくほとく ほとう

э

Let (a, b, c) be a solution to $x^5 + y^5 = dz^p$ such that (a, b) = 1. Hence

• $\phi(a,b) = c_0^p$ and $\phi_1(a,b) = c_1^p$ and $d \mid a+b$ or,

•
$$\phi(a,b) = 5c_0^p$$
 and $\phi_1(a,b) = \sqrt{5}c_1^p$ and $d \mid a+b$

where $c_0 \mid c$ and c_1 divide c in $\mathbb{Q}(\sqrt{5})$.

Definition

Given (a, b, c) as above define the Frey-curve over $\mathbb{Q}(\sqrt{5})$

$$E_{(a,b)}: y^2 = x^3 + 2(a+b)x^2 - \bar{\omega}\phi_1(a,b)x.$$

Its discriminant is

$$\Delta(E) = 2^{6}\bar{\omega}\phi\phi_{1} = \begin{cases} 2^{6}\bar{\omega}(c_{0}c_{1})^{p} & \text{if } 5 \nmid a+b, \\ 2^{6}\bar{\omega}5\sqrt{5}(c_{0}c_{1})^{p} & \text{if } 5 \mid a+b \end{cases}$$

・ロト ・四ト ・ヨト ・ヨト

Theorem (Chap. 2)

Let $K = \mathbb{Q}(\theta)$ where $\theta = \sqrt{\frac{1}{2}(5 + \sqrt{5})}$. Put $\gamma = 2\theta^2 - \theta - 5$ and consider the twist of $E_{(a,b)}$ by γ defined over *K* by

$$E_{\gamma}: y^2 = x^3 + 2\gamma(a+b)x^2 - \gamma^2 \bar{\omega} \phi_1(a,b)x.$$

The Weil restriction $B = \operatorname{Res}_{K/\mathbb{Q}}(E_{\gamma}/K) \sim S_1 \times S_2$ where S_i are two non-isogenous abelian surfaces of GL_2 -type defined over \mathbb{Q} . Each S_i has endomorphism algebra isomorphic to $\mathbb{Q}(i)$.

Let ϵ be a charecter fixing K. In particular, it follows that

 There are 4 Galois representations of G_Q extending ρ<sub>E_γ,ρ and they satisfy
</sub>

$$\rho_{S_1,\lambda} \otimes \epsilon = \rho_{S_1,\lambda}^{\sigma}, \quad \rho_{S_1,\lambda} \otimes \epsilon^2 = \rho_{S_2,\lambda}, \quad \rho_{S_1,\lambda} \otimes \epsilon^3 = \rho_{S_2,\lambda}^{\sigma}$$

・ (山) (雪) (雪) (雪)

Theorem (Chap. 2)

Let $K = \mathbb{Q}(\theta)$ where $\theta = \sqrt{\frac{1}{2}(5 + \sqrt{5})}$. Put $\gamma = 2\theta^2 - \theta - 5$ and consider the twist of $E_{(a,b)}$ by γ defined over K by

$$E_{\gamma}: y^2 = x^3 + 2\gamma(a+b)x^2 - \gamma^2 \bar{\omega} \phi_1(a,b)x.$$

The Weil restriction $B = \operatorname{Res}_{K/\mathbb{Q}}(E_{\gamma}/K) \sim S_1 \times S_2$ where S_i are two non-isogenous abelian surfaces of GL_2 -type defined over \mathbb{Q} . Each S_i has endomorphism algebra isomorphic to $\mathbb{Q}(i)$.

Let ϵ be a charecter fixing K. In particular, it follows that

 There are 4 Galois representations of G_Q extending ρ_{Eγ,p} and they satisfy

$$\rho_{S_{1},\lambda}\otimes\epsilon=\rho_{S_{1},\lambda}^{\sigma},\quad\rho_{S_{1},\lambda}\otimes\epsilon^{2}=\rho_{S_{2},\lambda},\quad\rho_{S_{1},\lambda}\otimes\epsilon^{3}=\rho_{S_{2},\lambda}^{\sigma}$$

Let *p* be the prime in $x^5 + y^5 = Cz^p$. We let $\bar{\rho} := \bar{\rho}_{S_1,\lambda}$, $\lambda \mid p$ and we want to apply Serre's conjecture to it.

Serre Conjecture (Khare, Wintenberger)

Let $\bar{\rho} : G_{\mathbb{Q}} \to GL_2(\bar{\mathbb{F}}_{\rho})$ be continuous, odd and irreducible with Serre's parameters $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$. Then, $\bar{\rho}$ is modular of type $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$.

Theorem (Frey-Hellegouarch)

Let E/K be an elliptic curve and $\ell \nmid 2, p$ unramified in K. If ℓ is semistable for E and $p|\nu_{\ell}(\Delta_m(E))$ then $\bar{\rho}_{E,p}$ is unramified at ℓ . Moreover, if $\ell \mid p$ then $\bar{\rho}_{E,p}$ is finite at ℓ .

From Serre conjecture there is a newform *f* of type $(M, 2, \bar{\epsilon})$ with M = 1600, 800, 400 or 100 and a prime \mathfrak{P} in \mathbb{Q}_f above *p* such that $\bar{\rho} \sim \bar{\rho}_{f,\mathfrak{P}}$

Let *p* be the prime in $x^5 + y^5 = Cz^p$. We let $\bar{\rho} := \bar{\rho}_{S_1,\lambda}$, $\lambda \mid p$ and we want to apply Serre's conjecture to it.

Serre Conjecture (Khare, Wintenberger)

Let $\bar{\rho} : G_{\mathbb{Q}} \to GL_2(\bar{\mathbb{F}}_{\rho})$ be continuous, odd and irreducible with Serre's parameters $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$. Then, $\bar{\rho}$ is modular of type $(N(\bar{\rho}), k(\bar{\rho}), \epsilon(\bar{\rho}))$.

Theorem (Frey-Hellegouarch)

Let E/K be an elliptic curve and $\ell \nmid 2, p$ unramified in K. If ℓ is semistable for E and $p|_{\nu_{\ell}}(\Delta_m(E))$ then $\bar{\rho}_{E,p}$ is unramified at ℓ . Moreover, if $\ell \mid p$ then $\bar{\rho}_{E,p}$ is finite at ℓ .

From Serre conjecture there is a newform *f* of type $(M, 2, \bar{\epsilon})$ with M = 1600, 800, 400 or 100 and a prime \mathfrak{P} in \mathbb{Q}_f above *p* such that $\bar{\rho} \sim \bar{\rho}_{f,\mathfrak{P}}$

Given a primitive solution (a, b, c) we consider also the Frey curve

$$F_{(a,b)}: y^2 = x^3 + 2(a-b)x^2 + (\frac{3}{10}\sqrt{5} + \frac{1}{2})\phi_1(a,b)x.$$

- $F_{(a,b)}$ are also \mathbb{Q} -curves.
- We can apply to it everything that we have done with $E_{(a,b)}$.
- With two Frey curves we can apply Siksek's multi-Frey technique.

In particular, we have a double isomorphism

$$(\bar{\rho}_{E_{\gamma},p},\bar{\rho}_{F_{\gamma},p})\sim (\bar{\rho}_{f,\mathfrak{P}}|G_{\mathcal{K}},\bar{\rho}_{g,\mathfrak{P}'}|G_{\mathcal{K}})$$

where $f \in S_2(M_f, \bar{\epsilon})$ and $g \in S_2(M_g, \bar{\epsilon})$ where the pair of levels (M_f, M_g) may be (400, 100), (100, 400), (1600, 1600) or (800, 800).

For example, let (f, g) be such that f has no CM, level 1600 and $\mathbb{Q}_f = \mathbb{Q}(i)$. Let χ be the character of $\mathbb{Q}(\sqrt{2})$.

- With SAGE we computed the coefficients of *f* ⊗ χ to find that *f* ⊗ χ are all of level of level 800.
- Let *E*_{γ,2} the twist of *E*_γ by 2. The representation
 ρ₁ := ρ_{S1,λ} ⊗ χ extends ρ<sub>E_{γ,2},ρ.
 </sub>
- $\bar{\rho}_1$ is modular of type $(M_1, 2, \bar{\epsilon})$ with M = 100 or 400
- $\bar{\rho}_1 = \overline{\rho_{S_1,\lambda} \otimes \chi} \sim \bar{\rho} \otimes \bar{\chi} \sim \bar{\rho}_{f,p} \otimes \bar{\chi} \sim \bar{\rho}_{f \otimes \chi,p} \sim \bar{\rho}_{f',p},$
- We know that f' has level 800
- Contradiction, since this kind of level lowering can not happen (by Carayol)!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

For example, let (f, g) be such that f has no CM, level 1600 and $\mathbb{Q}_f = \mathbb{Q}(i)$. Let χ be the character of $\mathbb{Q}(\sqrt{2})$.

- With SAGE we computed the coefficients of *f* ⊗ χ to find that *f* ⊗ χ are all of level of level 800.
- Let $E_{\gamma,2}$ the twist of E_{γ} by 2. The representation $\rho_1 := \rho_{S_1,\lambda} \otimes \chi$ extends $\rho_{E_{\gamma,2},p}$.
- $\bar{\rho}_1$ is modular of type $(M_1, 2, \bar{\epsilon})$ with M = 100 or 400
- $\bar{\rho}_1 = \overline{\rho_{S_1,\lambda} \otimes \chi} \sim \bar{\rho} \otimes \bar{\chi} \sim \bar{\rho}_{f,\rho} \otimes \bar{\chi} \sim \bar{\rho}_{f \otimes \chi,\rho} \sim \bar{\rho}_{f',\rho},$
- We know that f' has level 800
- Contradiction, since this kind of level lowering can not happen (by Carayol)!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

For example, let (f, g) be such that f has no CM, level 1600 and $\mathbb{Q}_f = \mathbb{Q}(i)$. Let χ be the character of $\mathbb{Q}(\sqrt{2})$.

- With SAGE we computed the coefficients of *f* ⊗ χ to find that *f* ⊗ χ are all of level of level 800.
- Let $E_{\gamma,2}$ the twist of E_{γ} by 2. The representation $\rho_1 := \rho_{S_1,\lambda} \otimes \chi$ extends $\rho_{E_{\gamma,2},\rho}$.
- $\bar{\rho}_1$ is modular of type $(M_1, 2, \bar{\epsilon})$ with M = 100 or 400
- $\bar{\rho}_1 = \overline{\rho_{S_1,\lambda} \otimes \chi} \sim \bar{\rho} \otimes \bar{\chi} \sim \bar{\rho}_{f,p} \otimes \bar{\chi} \sim \bar{\rho}_{f \otimes \chi,p} \sim \bar{\rho}_{f',p},$
- We know that f' has level 800
- Contradiction, since this kind of level lowering can not happen (by Carayol)!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

For example, let (f, g) be such that f has no CM, level 1600 and $\mathbb{Q}_f = \mathbb{Q}(i)$. Let χ be the character of $\mathbb{Q}(\sqrt{2})$.

- With SAGE we computed the coefficients of *f* ⊗ χ to find that *f* ⊗ χ are all of level of level 800.
- Let $E_{\gamma,2}$ the twist of E_{γ} by 2. The representation $\rho_1 := \rho_{S_1,\lambda} \otimes \chi$ extends $\rho_{E_{\gamma,2},p}$.
- $\bar{\rho}_1$ is modular of type $(M_1, 2, \bar{\epsilon})$ with M = 100 or 400

•
$$\bar{\rho}_1 = \overline{\rho_{S_1,\lambda} \otimes \chi} \sim \bar{\rho} \otimes \bar{\chi} \sim \bar{\rho}_{f,p} \otimes \bar{\chi} \sim \bar{\rho}_{f \otimes \chi,p} \sim \bar{\rho}_{f',p},$$

- We know that f' has level 800
- Contradiction, since this kind of level lowering can not happen (by Carayol)!

ヘロア 人間 アメヨア 人口 ア

3) Frey curves for equations of signature (r, r, p) for $r \ge 7$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

- Let r ≥ 7 be a fixed prime and K⁺ be the maximal totally real subfield of Q(ζr).
- Let h_r^+ be the class number of K^+ .
- For r = 6k + 1 we denote by K₀ the subfield of K⁺ of degree k.

Theorem (Chap. 3 and 5)

Let $C \in \mathbb{Z} \setminus \{0\}$ be divisible only by primes $q \not\equiv 1, 0 \pmod{r}$. Then,

- There are Frey curves over K^+ attached to the equations $x^r + y^r = Cz^p$
- 2 If r = 6k + 1 there are Frey curves defined over K_0 .

If r = 4m + 1 there are two more Frey curves.

From now on we suppose that C is as in the statement.

Let $\zeta = \zeta_r$ and observe that

$$x^r + y^r = (x + y)\phi_r(x, y)$$

and that over $\mathbb{Q}(\zeta)$ we have

$$\phi_r(x,y) = \prod_{i=1}^{r-1} (x + \zeta^i y).$$

Since $r - 1 \ge 6$ is even we choose three different factors f_i of ϕ_r with coefficients in K^+ of the form

$$f_i = (\mathbf{x} + \zeta^{k_i} \mathbf{y})(\mathbf{x} + \zeta^{r-k_i} \mathbf{y}).$$

From now on we will be considering triples (k_1, k_2, k_3) $(1 \le k_i \le r - 1)$ such that the corresponding three polynomials f_1, f_2, f_3 are different.

Lemma

Let $r \ge 7$ and (k_1, k_2, k_3) be fixed. Let $p \nmid h_r^+$ be a prime. Suppose there is a solution (a, b, c') to $x^r + y^r = Cz^p$ such that |abc'| > 1 and (a, b) = 1. Then, there exists a unit $\mu \in \mathcal{O}_{K^+}^{\times}$ and a solution (a, b, c) in $\mathbb{Z}^2 \times \mathcal{O}_{K^+}$ such that $|Norm_{K^+/\mathbb{Q}}(c)| > 1$ (non-trivial) to

$$f_1(x, y)f_2(x, y)f_3(x, y) = \mu z^p$$
 or (1)

$$f_1(x, y)f_2(x, y)f_3(x, y) = \mu \pi_r^3 Z^p,$$
 (2)

which satisfies $r \nmid a + b$ in case (1) and $r \mid a + b$ in case (2). Moreover:

- *if d* | *C*, *then d* | *a* + *b*;
- the primes in K⁺ divisors of c are all above rational primes congruent to 1 (mod r). In particular, neither the primes above 2 nor the primes above r divide c.

Fix $r \ge 7$ and (k_1, k_2, k_3) . Recall that

$$\begin{cases} f_1(x, y) = x^2 + (\zeta^{k_1} + \zeta^{r-k_1})xy + y^2, \\ f_2(x, y) = x^2 + (\zeta^{k_2} + \zeta^{r-k_2})xy + y^2, \\ f_3(x, y) = x^2 + (\zeta^{k_3} + \zeta^{r-k_3})xy + y^2. \end{cases}$$

We are interested in finding a triple (α, β, γ) such that

$$\alpha f_1 + \beta f_2 + \gamma f_3 = \mathbf{0}.$$

We see from the form of the f_i that finding (α, β, γ) is always possible, because it is a solution of a linear system with two equations in three variables. In particular, we choose the solution

$$\begin{cases} \alpha = -(\zeta^{k_2} + \zeta^{r-k_2} - \zeta^{k_3} - \zeta^{r-k_3}), \\ \beta = \zeta^{k_1} + \zeta^{r-k_1} - \zeta^{k_3} - \zeta^{r-k_3}, \\ \gamma = -\zeta^{k_1} - \zeta^{r-k_1} + \zeta^{k_2} + \zeta^{r-k_2}. \end{cases}$$

Suppose now that $(a, b, c) \in \mathbb{Z}^2 \times \mathcal{O}_{K^+}$ is a primitive solution to equation (1) or (2) and let

 $A(a,b) = \alpha f_1(a,b), \quad B(a,b) = \beta f_2(a,b), \quad C(a,b) = \gamma f_3(a,b).$ Observe that A + B + C = 0.

We define the Frey curve over K^+

$$E_{(a,b)}: y^2 = x(x - A(a,b))(x + B(a,b))$$

satisfying

$$\Delta = 2^4 (AB(A+B))^2 = \begin{cases} \mu^2 2^4 (\alpha\beta\gamma)^2 c^{2p} & \text{if } r \nmid a+b, \\ \mu^2 2^4 (\alpha\beta\gamma)^2 \pi_r^6 c^{2p} & \text{if } r \mid a+b. \end{cases}$$

Suppose now that $(a, b, c) \in \mathbb{Z}^2 \times \mathcal{O}_{K^+}$ is a primitive solution to equation (1) or (2) and let

 $A(a,b) = \alpha f_1(a,b), \quad B(a,b) = \beta f_2(a,b), \quad C(a,b) = \gamma f_3(a,b).$

Observe that A + B + C = 0.

We define the Frey curve over K^+

$$E_{(a,b)}: y^2 = x(x - A(a,b))(x + B(a,b))$$

satisfying

$$\Delta = 2^4 (AB(A+B))^2 = \begin{cases} \mu^2 2^4 (\alpha\beta\gamma)^2 c^{2p} & \text{if } r \nmid a+b, \\ \mu^2 2^4 (\alpha\beta\gamma)^2 \pi_r^6 c^{2p} & \text{if } r \mid a+b. \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Let r = 6k + 1 and σ a generator of $\text{Gal}(\mathbb{Q}(\zeta_r)/\mathbb{Q})$. Denote by K_0 the totally real subfield of K^+ with degree k.

Theorem (Chap. 3)

Fix $(k_1, k_2, k_3) = (1, n_2, n_3)$, where $\zeta_r^{n_2} = \sigma^{2k}(\zeta_r)$ and $\zeta_r^{n_3} = \sigma^{4k}(\zeta_r)$. Suppose that (a, b, c) is a primitive solution of (1) or (2). Then the Frey curves $E_{(a,b)}/K^+$ have a model over K_0 .

Proof: We have $\sigma^{2k}(A) = B$, $\sigma^{2k}(B) = C$, $\sigma^{2k}(C) = A$. Moreover, the short Weierstrass form satisfies

$$a_4 = -432(AB + BC + CA) = \sigma^{2k}(a_4)$$

$$a_6 = -1728(2A^3 + 3A^2B - 3AB^2 - 2B^3)$$

 $= -1728(2(-B-C)^3 + 3(-B-C)^2B - 3(-B-C)B^2 - 2B^3)$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

 $= -1728(2B^3 + 3B^2C - 3BC^2 - 2C^3) = \sigma^{2k}(a_6)$

Let r = 6k + 1 and σ a generator of $\text{Gal}(\mathbb{Q}(\zeta_r)/\mathbb{Q})$. Denote by K_0 the totally real subfield of K^+ with degree k.

Theorem (Chap. 3)

Fix $(k_1, k_2, k_3) = (1, n_2, n_3)$, where $\zeta_r^{n_2} = \sigma^{2k}(\zeta_r)$ and $\zeta_r^{n_3} = \sigma^{4k}(\zeta_r)$. Suppose that (a, b, c) is a primitive solution of (1) or (2). Then the Frey curves $E_{(a,b)}/K^+$ have a model over K_0 .

Proof: We have $\sigma^{2k}(A) = B$, $\sigma^{2k}(B) = C$, $\sigma^{2k}(C) = A$. Moreover, the short Weierstrass form satisfies

$$\begin{aligned} a_4 &= -432(AB + BC + CA) = \sigma^{2k}(a_4) \\ a_6 &= -1728(2A^3 + 3A^2B - 3AB^2 - 2B^3) \\ &= -1728(2(-B - C)^3 + 3(-B - C)^2B - 3(-B - C)B^2 - 2B^3) \\ &= -1728(2B^3 + 3B^2C - 3BC^2 - 2C^3) = \sigma^{2k}(a_6) \end{aligned}$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

4) Modularity and Irreducibility of Galois representations attached to certain elliptic curves.

ヘロン 人間 とくほ とくほ とう

E DQC

Theorem (Chap. 3)

Let F be a totally real abelian number field and C and elliptic curve defined over F. Suppose that 3 splits completely in F and C has good reduction at the primes above 3. Then C is modular.

Idea of proof: First prove that, when irreducible, $\bar{\rho}_{C,3}$ is modular via Langlands-Tunnel theorem. Then we divide into three cases

- Assume $\bar{\rho}_{C,3}$ and $\bar{\rho}_{C,3}|G_{F(\sqrt{-3})}$ both abs. irred.
- **2** Assume $\bar{\rho}_{C,3}$ abs. irr. and $\bar{\rho}_{C,3}|G_{F(\sqrt{-3})}$ both reducible.
- 3 Assume $\bar{\rho}_{C,3}$ abs. reducible.

and we show that in each case a modularity lifting theorem applies.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Modularity and Irreducibility

- Kisin's modularity lifting theorem for potentially Barsotti-Tate representations.
- Skinner-Wiles for residually modular nearly ordinary reps.
- Skinner-Wiles for residually reducible ordinary reps.

Theorem (Chap. 3)

Let *F* be a totally real number field and C/F be an elliptic curve with conductor N_E . Let *A* be the factor of N_E corresponding to the additive primes. Suppose further that $q \nmid N_C$ is a fixed prime of good reduction. Then, there exist an explicit constant M(F, A, q) such that, if

- 1) *p* is odd and unramified in *F*,
- 2) all primes $p \mid p$ are of semistable reduction for C,
- 3) p > M(F, A, q),

then, the representation $\bar{\rho}_{C,p}$ is absolutely irreducible.

Modularity and Irreducibility

- Kisin's modularity lifting theorem for potentially Barsotti-Tate representations.
- Skinner-Wiles for residually modular nearly ordinary reps.
- Skinner-Wiles for residually reducible ordinary reps.

Theorem (Chap. 3)

Let *F* be a totally real number field and *C*/*F* be an elliptic curve with conductor N_E . Let *A* be the factor of N_E corresponding to the additive primes. Suppose further that $\mathfrak{q} \nmid N_C$ is a fixed prime of good reduction. Then, there exist an explicit constant $M(F, A, \mathfrak{q})$ such that, if

- 1) *p* is odd and unramified in *F*,
- 2) all primes $p \mid p$ are of semistable reduction for *C*,
- **3)** p > M(F, A, q),

then, the representation $\bar{\rho}_{C,p}$ is absolutely irreducible.

4) Applications to the cases r = 13 and r = 7.

Theorem (Chap. 4)

Let d = 3, 5, 7 or 11 and γ be an integer divisible only by primes $\ell \neq 13$ satisfying $\ell \not\equiv 1 \pmod{13}$. Let also p > 4992539be a prime. Then,

(*I*) The equation

$$x^{13} + y^{13} = d\gamma z^{\rho}$$

has no solutions (a, b, c) such that |abc| > 1 (non-trivial), gcd(a, b) = 1 (primitive) and $13 \nmid c$.

(II) The equation

$$x^{26} + y^{26} = 2d\gamma z^p$$

has no non-trivial primitive solutions.

Since $13 = 6 \times 2 + 1$ we have,

$$k = 2$$
, $K_0 = \mathbb{Q}(\sqrt{13})$ and $(1, n_2, n_3) = (1, 4, 3)$

Application to r = 13

By the recipe we obtain Frey curves with models given by $E_{(a,b)}$: $y^2 = x^3 + a_4(a,b)x + a_6(a,b)$, where $w^2 = 13$ and

$$a_4(a,b) = (216w - 2808)a^4 + (-1728w + 5616)a^3b + (1728w - 11232)a^2b^2 + (-1728w + 5616)ab^3 + (216w - 2808)b^4$$

$$\begin{array}{ll} a_6(a,b) &=& (-8640w+44928)a^6+(49248w-235872)a^5b\\ &+(-129600w+471744)a^4b^2+(152928w\\ &-662688)a^3b^3+(-129600w+471744)a^2b^4\\ &+(49248w-235872)ab^5+\\ &+(-8640w+44928)b^6+(50193w+182520)b^6, \end{array}$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

The conductor of $E_{(a,b)}$ is given by $N_E = 2^s(w)^2 \operatorname{rad}(c)$, where $w^2 = 13$ and s = 3, 4. In particular, *E* has good red. at all $v \mid 3$.

Theorem

The Frey curves $E_{(a,b)}/\mathbb{Q}(\sqrt{13})$ are modular.

Proof: $\mathbb{Q}(\sqrt{13})$ is a totally real and abelian. 3 splits in $\mathbb{Q}(\sqrt{13})$ and all the primes above 3 are of good reduction.

Theorem

Let p > 97 and (a, b) = 1. Then, the representations $\bar{\rho}_{E,p} : G_{\mathbb{Q}(\sqrt{13})} \to GL_2(\mathbb{F}_p)$ attached to the Frey curves $E_{(a,b)}$ are abs. irreducible.

・ロト ・ 理 ト ・ ヨ ト ・

Application to r = 13

Now let *p* be the exponent in $x^{13} + y^{13} = Cz^p$.

Theorem (Level Lowering)

There is an Hilbert newform *f* defined over $\mathbb{Q}(\sqrt{13})$ of level $2^s w^2$ and parallel weight 2 such that $\bar{\rho}_{E,p} \sim \bar{\rho}_{f,\mathfrak{P}}$ for some $\mathfrak{P} \mid p$.

Let $L \nmid N_E$ be a prime. From $\bar{\rho}_{E,p} \sim \bar{\rho}_{f,\mathfrak{P}}$ it follows that

$$a_L(E) \equiv a_L(f) \pmod{\mathfrak{P}},$$

where $f \in S_2(2^s w^2)$ for s = 3, 4.

We want to contradict the previous congruence!!

We divide the newforms into 2 sets:

- S1: Newforms such that $\mathbb{Q}_f = \mathbb{Q}$.
- S2: Newforms such that \mathbb{Q}_f strictly contains \mathbb{Q} (p > 4992539).

Application to r = 13

On one hand, with the help of John Voight we obtained a list of about 170 newforms in S1, as an example:

$a_{L_3^0}$	$a_{L_{3}^{1}}$	$a_{L_{17}^0}$	$a_{L_{17}^1}$	$a_{L^0_{23}}$	$a_{L^{1}_{23}}$	a_{L_5}	$a_{L^0_{29}}$	$a_{L^{1}_{29}}$	a_{L_7}	$a_{L_{11}}$
1	1	3	3	1	1	-6	3	3	-13	-21
3	-1	-7	1	-2	-2	7	0	-8	-1	-6
3	-1	7	-1	2	2	-7	0	-8	1	6
-3	-3	-3	-3	-1	-1	6	-1	-1	13	-3
-3	-3	3	3	1	1	-6	-1	-1	-13	3
-3	-1	-7	-7	-3	-1	-6	-7	9	1	9
-3	-1	-7	1	-2	2	-7	0	8	-1	-6
-3	-1	7	-1	2	-2	7	0	8	1	6
-1	-1	-5	7	-5	3	6	-1	-5	-1	3
-1	-1	-3	-7	-7	1	2	3	7	1	-3

ヘロン 人間 とくほ とくほ とう

■ のへで

On the other hand, we used SAGE to go through all the possible residual elliptic curves for pairs $(a, b) \in \mathbb{F}_{\ell} \times \mathbb{F}_{\ell}$ and compute the possible values for $a_L(E)$:

$$\begin{cases} a_{L_3^0} \in \{-3, -1\}, \\ a_{L_3^1} \in \{-3, -1, 1\}, \\ a_{L_5} \in \{-6, -2, 2\}, \\ a_{L_7} \in \{11, -11, -1, -5\}, \\ a_{L_{11}} \in \{-15, 3, 5, -7, 9, -1, 15\}, \\ a_{L_{17}^0} \in \{1, 3, 5, 7, -3, -1\}, \\ a_{L_{17}^1} \in \{3, 5, 7, -7, -5, -3\}, \\ a_{L_{23}^0} \in \{1, 3, 5, 7, -9, -7, -5, -3\}, \\ a_{L_{23}^1} \in \{1, 3, 7, -9, -3, -1\}, \\ a_{L_{29}^1} \in \{1, 3, 5, 9, -9, -7, -5, -3, -1\}, \\ a_{L_{29}^1} \in \{1, 3, 5, 9, -9, -7, -5, -3, -1\}, \end{cases}$$

伺き くほき くほう

Application to r = 13

For example, let f be such that $a_{L_5}(f) = -9$ and recall that $a_{L_5}(E) \in \{-6, -2, 2\}.$

Easily we see that for p > 11 we have a contradiction with

 $-9 \equiv -6, -2, 2 \pmod{p}.$

Going through all the computed newforms and using several primes we eliminate all except 4.

$a_{L_3^0}$	$a_{L_{3}^{1}}$	a _{L0} ₁₇	$a_{L_{17}^1}$	$a_{L^0_{23}}$	$a_{L_{23}^1}$	a_{L_5}	a _{L0} 29	$a_{L_{29}^1}$	a_{L_7}	<i>a</i> _{L11}
-1	1	7	3	1	7	2	-7	-3	-1	3
-1	- 1	3	7	-7	-1	2	-3	-7	-1	3
-1	-3	-1	-5	5	-9	-6	-3	1	-5	15
-3	-1	1	-3	-3	-9	-2	-7	5	-11	-15

These newforms correspond to $E_{(1,0)}$, $E_{(1,1)}$, $E_{(1,-1)}$ and $E_{(1,1)}$ twisted by -1.

Application to r = 13

For example, let f be such that $a_{L_5}(f) = -9$ and recall that $a_{L_5}(E) \in \{-6, -2, 2\}.$

Easily we see that for p > 11 we have a contradiction with

$$-9 \equiv -6, -2, 2 \pmod{p}.$$

Going through all the computed newforms and using several primes we eliminate all except 4.

$a_{L_3^0}$	$a_{L_{3}^{1}}$	$a_{L_{17}^0}$	$a_{L_{17}^1}$	$a_{L^0_{23}}$	$a_{L^{1}_{23}}$	a_{L_5}	$a_{L^0_{29}}$	$a_{L^{1}_{29}}$	a_{L_7}	$a_{L_{11}}$
-1	1	7	3	1	7	2	-7	-3	-1	3
-1	1	3	7	-7	-1	2	-3	-7	-1	3
-1	-3	-1	-5	5	-9	-6	-3	1	-5	15
-3	-1	1	-3	-3	-9	-2	-7	5	-11	-15

These newforms correspond to $E_{(1,0)}$, $E_{(1,1)}$, $E_{(1,-1)}$ and $E_{(1,1)}$ twisted by -1.

We will now deal with the last 4 newforms. Recall that

$$d\gamma \mid a + b$$
 and $d = 3, 5, 7, 11$

Using SAGE we go through all the possible non-zero pairs $(a, b) \in \mathbb{F}_d \times \mathbb{F}_d$ satisfying $a + b \equiv 0 \pmod{d}$ and we computed the possible values for $a_{L_d}(E)$ to get

if <i>d</i> = 3	then	$a_{L_3^0} = -3$ and $a_{L_3^1} = -1$
if <i>d</i> = 5	then	$a_{L_5} = -2$
if <i>d</i> = 7	then	$a_{L_7} = -11$
if <i>d</i> = 11	then	<i>a</i> _{<i>L</i>₁₁} = -15

These conditions allow to eliminate the newforms attached to $E_{(1,0)}$, $E_{(1,1)}$ and $E_{(1,1)}$ twisted by -1. We are left to eliminate the newform *g* corresponding to the fourth row.

Let \mathfrak{P}_{13} be the prime in K^+ above 13. The conductor of the curve $E_{(a,b)}/K^+$ satisfies $v_{\mathfrak{P}_{13}}(N_E) = 0$ or $v_{\mathfrak{P}_{13}}(N_E) = 2$ if 13 | a + b or 13 $\nmid a + b$, respectively.

- The surviving newform g corresponds to $E_{(1,-1)}$.
- From the proposition the conductor at \mathfrak{P}_{13} of $\rho_{g,p}|G_{K^+}$ is \mathfrak{P}^0_{13}
- Assume now that $13 \nmid a + b$ (is equivalent to $13 \nmid c$)
- From the proposition the conductor at \mathfrak{P}_{13} of $\rho_{E,p}|G_{K^+}$ is \mathfrak{P}^2_{13}
- The conductors of the reductions modulo p will also have different conductors at \mathfrak{P}_{13} since p is big.
- Thus $\bar{\rho}_{E,p} \sim \bar{\rho}_{g,\mathfrak{P}}$ can not hold.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let \mathfrak{P}_{13} be the prime in K^+ above 13. The conductor of the curve $E_{(a,b)}/K^+$ satisfies $v_{\mathfrak{P}_{13}}(N_E) = 0$ or $v_{\mathfrak{P}_{13}}(N_E) = 2$ if 13 | a + b or 13 $\nmid a + b$, respectively.

- The surviving newform g corresponds to $E_{(1,-1)}$.
- From the proposition the conductor at \mathfrak{P}_{13} of $\rho_{g,p}|G_{K^+}$ is \mathfrak{P}^0_{13}
- Assume now that $13 \nmid a + b$ (is equivalent to $13 \nmid c$)
- From the proposition the conductor at \mathfrak{P}_{13} of $\rho_{E,p}|G_{K^+}$ is \mathfrak{P}^2_{13}
- The conductors of the reductions modulo *p* will also have different conductors at \mathfrak{P}_{13} since *p* is big.
- Thus $\bar{\rho}_{E,p} \sim \bar{\rho}_{g,\mathfrak{P}}$ can not hold.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let \mathfrak{P}_{13} be the prime in K^+ above 13. The conductor of the curve $E_{(a,b)}/K^+$ satisfies $v_{\mathfrak{P}_{13}}(N_E) = 0$ or $v_{\mathfrak{P}_{13}}(N_E) = 2$ if 13 | a + b or 13 $\nmid a + b$, respectively.

- The surviving newform g corresponds to $E_{(1,-1)}$.
- From the proposition the conductor at \mathfrak{P}_{13} of $\rho_{g,p}|G_{K^+}$ is \mathfrak{P}^0_{13}
- Assume now that $13 \nmid a + b$ (is equivalent to $13 \nmid c$)
- From the proposition the conductor at \mathfrak{P}_{13} of $\rho_{E,p}|G_{K^+}$ is \mathfrak{P}^2_{13}
- The conductors of the reductions modulo *p* will also have different conductors at \mathfrak{P}_{13} since *p* is big.
- Thus $\bar{\rho}_{E,p} \sim \bar{\rho}_{g,\mathfrak{P}}$ can not hold.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Theorem (Chap. 4)

- Let $d = 2^{s_0}3^{s_1}5^{s_2}$ and γ be an integer divisible only by primes $\ell \neq 1, 0 \pmod{7}$. Then, if $p \ge 17$ we have that
- (A) The equation $x^7 + y^7 = d\gamma z^{\rho}$ has no non-trivial primitive solutions such that $7 \nmid c$ if (s_0, s_1, s_2) satisfies any of the following three conditions $(\geq 2, \geq 0, \geq 0)$, $(= 1, \geq 1, \geq 0)$ or $(= 0, \geq 0, \geq 1)$.
- (*B*) The equation $x^{14} + y^{14} = d\gamma z^p$ has no non-trivial primitive solutions if $s_1 > 0$ or $s_2 > 0$ or $s_0 \ge 2$.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

In summary, we generalized some aspects of the modular approach and used it to study some equations of signature (r, r, p) for $r \ge 5$. In particular, we

- Solved equations of signature (5, 5, p) via multi-Frey technique using two Q-curves.
- Constructed Frey curves over totally real fields to equations of signature (*r*, *r*, *p*) for all primes *r* ≥ 7.
- Used them to apply the modular approach via classic newforms for signature (7,7,*p*)
- Proved modularity and irreducibility statements for some elliptic curves over totally real abelian number fields.
- Used them to apply the modular approach via Hilbert newforms over $\mathbb{Q}(\sqrt{13})$ for signature (13, 13, *p*)
- Constructed two extra Frey curves when r = 4m + 1

ヘロン ヘアン ヘビン ヘビン

This thesis resulted in the following papers that can be found at arxiv.org

- N. Freitas: 'Recipes for Fermat-type equations of the form $x^r + y^r = Cz^{p'}$, preprint.
- L. Dieulefait, N. Freitas: 'Fermat-type equations of signature (13, 13, *p*) via Hilbert cuspforms', submitted.
- L. Dieulefait, N. Freitas: 'The Fermat-type equations x⁵ + y⁵ = 2z^p or 3z^p solved through Q-curves', to appear in Mathematics of Computation.

ヘロト ヘアト ヘビト ヘビト