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Ángeles Carmona1 and Andrés M. Encinas1
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Some definitions

Γ = (V, c) network, c conductances on the edges

F ⊂ V proper and connected subset, δ(F ) boundary of F

A,B ⊂ δ(F ) non-empty subsets, A ∪B 6= ∅

R = δ(F ) \ (A ∪B)

 partition of
the boundary
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Our objective

 Main objective: to obtain the conductances of the network by means
of solving partial boundary value problems (BVPs)

 We assume the network is in an electrical equilibrium state

 We assume some information on the boundary to be known, as it can
be phisically obtained from electrical boundary measurements

However, instead of having classical boundary information (simple
information in all the boundary) we assume to have

R simple information

A double information

B no information at all!
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Cristina Araúz (UPC) Partial BVPs on finite networks SIMBa, 26/11/2012 5 / 45



Our objective

 The Inverse BVPs arised in 1950 due to Calderón’s work

 Medical purposes: Electrical Impedance Tomography

EIT device

surface electrodes

˜

current injection

V voltage
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Some more definitions

F

F̄

F̄ = F ∪ δ(F )

L : C(F ) −→ C(F ) Laplacian of Γ u ∈ C(F )

x ∈ F  L(u)(x) =
∑
y∈F

c(x, y)
(
u(x)− u(y)

)
x ∈ δ(F )  L(u)(x) =

∑
y∈F

c(x, y)
(
u(x)− u(y)

)
=

∂u

∂nF
(x)

normal derivative
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Some more definitions

Lq(u) = L(u) + qu Schrödinger operator of Γ

ω ∈ C+(F ) weight on F ⇔
∑
x∈F

ω2(x) = 1

qω = −ω−1L(ω) Potential given by ω

Lemma (Bendito, Carmona, Encinas 2005)

Lq positive definite on C(F ) ⇔ there exists a weight ω such that q ≥ qω

 We work with potentials of the form q = qω + λ, where λ ≥ 0
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Partial Dirichlet-Neumann boundary value
problems
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Partial Dirichlet-Neumann BVPs

F

A

B

R

Definition (Partial Dirichlet-Neumann BVP on F )
Lq(u) = h on F

∂u

∂n
F

= g on A

u = f on A ∪R

R simple information

A double information

B no information at all!
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Partial Dirichlet-Neumann BVPs

F

A

B

R

Definition (Homogeneous partial Dirichlet-Neumann BVP)
Lq(uh) = 0 on F

∂uh
∂n

F

= 0 on A

uh = 0 on A ∪R

its solutions are a vector

subspace of C(F ∪B) that we

denote by VB
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Partial Dirichlet-Neumann BVPs

F

A

B

R

Definition (Adjoint partial Dirichlet-Neumann BVP)
Lq(ua) = 0 on F

∂ua
∂n

F

= 0 on B

ua = 0 on B ∪R

its solutions are a vector

subspace of C(F ∪A) that we

denote by VA
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Partial Dirichlet-Neumann BVPs

Remember our partial BVP


Lq(u) = h on F

∂u

∂n
F

= g on A

u = f on A ∪R

Theorem

|A| − |B| = dimVA − dimVB

 Existence of solution for any data h, g, f ⇔ VA = {0}
 Uniqueness of solution for any data h, g, f ⇔ VB = {0}
 In particular, if |A| = |B| then

existence ⇔ uniqueness ⇔ the homogeneous problem has u = 0
as its unique solution
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Partial Dirichlet-Neumann BVPs

Remember our partial BVP


Lq(u) = h on F

∂u

∂n
F

= g on A

u = f on A ∪R

 We work with boundaries where |A| = |B| and assume there exists a
unique solution u ∈ C(F )

Question

Can we find the solution?

Remark

We need Green and Poisson operators!
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Classical Green and Poisson operators
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Classical Green and Poisson operators

 The classical Green operator Gq solves the problem Lq
(
Gq(h)

)
= h on F

Gq(h) = 0 on δ(F )

 The classical Poisson operator Pq solves the problem Lq
(
Pq(f)

)
= 0 on F

Pq(f) = f on δ(F )

However, our problem is different on the boundary

⇒ We need to modify these operators (we will see it later)
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Dirichlet-to-Neumann map
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Dirichlet-to-Neumann map

Before modifying Green and Poisson operators, we need to define the
Dirichlet-to-Neumann map as

Λq(g) =
∂Pq(g)

∂n
F

χ
δ(F )

for all g ∈ C(δ(F ))

with kernel DNq : δ(F )× δ(F ) −→ R

(x, y) 7−→ DNq(x, y)

given by

Λq(g)(x) =

∫
δ(F )

DNq(x, y)g(y) dy

that is, DNq(x, y) = Λq
(
εy
)
(x) for all x, y ∈ δ(F )
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Dirichlet-to-Neumann map - a little remark

Definition (Schur complement)

A ∈Mk×k(R), B ∈Mk×l(R), C ∈Ml×k(R) and D ∈Ml×l(R) with D
non–singular

The Schur Complement of D on M , where M =

[
A B
C D

]
, is

M
/
D

= A−BD−1C ∈Mk×k(R)
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Dirichlet-to-Neumann map - a little remark

Definition (Schur complement)

M =

[
A B
C D

]
⇒ M

/
D

= A−BD−1C

Theorem

The Dirichlet-to-Neumann map kernel DNq can be expressed as a Schur
complement:

DNq(δ(F); δ(F)) = Lq(F;F)
/

Lq(F;F)

Corollary

If P,Q ⊆ δ(F ), then

DNq(P; Q) = Lq(P∪F;Q∪F)
/

Lq(F;F)
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Modified Green and Poisson operators
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Modified Green and Poisson operators


Lq(u) = h on F

∂u

∂n
F

= g on A

u = f on A ∪R

Using the Dirichlet-to-Neumann map, we can translate

Theorem

|A| − |B| = dimVA − dimVB
 Existence of solution for any data h, g, f ⇔ VA = {0}
 Uniqueness of solution for any data h, g, f ⇔ VB = {0}
 In particular, if |A| = |B| then

existence ⇔ uniqueness ⇔ the homogeneous problem has u = 0
as its unique solution
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Modified Green and Poisson operators


Lq(u) = h on F

∂u

∂n
F

= g on A

u = f on A ∪R

Into

Theorem

 It has solution for any data ⇔ DNq(B; A) has maximum range

 It has uniqueness of solution for any data ⇔ DNq(A; B) has
maximum range

 In particular, if |A| = |B| then it has a unique solution for any data
⇔ DNq(A; B) non-singular ⇔ DNq(B; A) non-singular

 From now on, we assume that DNq(A; B) is invertible
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Modified Green and Poisson operators

The unique solution of


Lq(u) = h on F

∂u

∂n
F

= g on A

u = f on A ∪R

can be expressed as u = G̃q(h) + Ñq(g) + P̃q(f) on F

, where


Lq

(
G̃q(h)

)
= h

∂G̃q(h)

∂n
F

= 0

G̃q(h) = 0


Lq

(
Ñq(g)

)
= 0

∂Ñq(g)

∂n
F

= g

Ñq(g) = 0


Lq

(
P̃q(h)

)
= 0 on F

∂P̃q(h)

∂n
F

= 0 on A

P̃q(h) = f on A ∪R

Modified Green
operator

Modified Neumann
operator

Modified Poisson
operator
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Lq

(
G̃q(h)

)
= h

∂G̃q(h)

∂n
F

= 0

G̃q(h) = 0


Lq

(
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Modified Green and Poisson operators

 We express these modified operators in terms of the classical ones and
the matrix DNq(A; B)

Remark

We can not express them in operator terms, as we need to invert a matrix.
However, we can do it in matricial terms
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Modified Green and Poisson operators

Theorem

G̃q(F ;F ) = Gq(F ;F )− Pq(F ;B) · DNq(A;B)
−1 · Lq(A;F ) · Gq(F ;F )

G̃q(A ∪ R;F ) = 0

G̃q(B;F ) = −DNq(A;B)
−1 · Lq(A;F ) · Gq(F ;F )

Ñq(F ;A) = Pq(F ;B) · DNq(A;B)
−1

Ñq(A ∪ R;A) = 0

Ñq(B;A) = DNq(A;B)
−1

P̃q(F ;A ∪ R) = Pq(F ;A ∪ R)− Pq(F ;B) · DNq(A;B)
−1 · DNq(A;A ∪ R)

P̃q(A ∪ R;A ∪ R) = I
A∪R

P̃q(B;A ∪ R) = −DNq(A;B)
−1 · DNq(A;A ∪ R)

 They can be expressed in terms of the classical Green and Poisson
operators and of the Dirichlet-to-Neumann map
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Ñq(B;A) = DNq(A;B)
−1

P̃q(F ;A ∪ R) = Pq(F ;A ∪ R)− Pq(F ;B) · DNq(A;B)
−1 · DNq(A;A ∪ R)

P̃q(A ∪ R;A ∪ R) = I
A∪R

P̃q(B;A ∪ R) = −DNq(A;B)
−1 · DNq(A;A ∪ R)

 They can be expressed in terms of the classical Green and Poisson
operators and of the Dirichlet-to-Neumann map
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Partial inverse boundary value problems
on finite networks
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Partial inverse BVPs on finite networks

 We want to obtain the conductances by solving partial BVPs

 We assume the network is in an equilibrium state
Lq(u) = 0 on F

∂u

∂n
F

= g on A

u = f on A ∪R

 We also assume the Dirichlet-to-Neumann map Λq to be known, as it
can be phisically obtained from electrical boundary measurements

Remark (Alessandrini 1998, Mandache 2001)

This problem is severelly ill-posed!
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Partial inverse BVPs on finite networks
Lq(u) = 0 on F

∂u

∂n
F

= g on A

u = f on A ∪R

Remember that under our
conditions (|A| = |B| and
DNq(A; B) invertible) this

problem has a unique solution

Corollary

The unique solution is characterized by the equations

u
B

= DNq(A; B)−1 · g − DNq(A; B)−1 · DNq(A; A ∪ R) · f on B

u(x) = Pq(x; A ∪ R) · f + Pq(x; B) · u
B

for all x ∈ F

Remark

Althogh u is not determined yet on F ,

u
B

gives the values of the solution on B!
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Partial inverse BVPs on finite networks

 However, this is not enough

with all these last steps we only get to know u on δ(F ) and no
conductances

 We restrict to circular planar networks to obtain some conductances

planar network ⇔ it can be drawn on the plane
without crossings between edges

circular planar
network

⇔ planar & all the boundary vertices
can be found in the same (exterior) face
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Partial inverse BVPs on finite networks

boundary circle

exterior face

boundary edge

boundary spike

boundary vertex

we will consider certain circular order
on the boundary

a circular pair is connected through
the network if there exists a set
of disjoint paths between them
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Partial inverse BVPs on finite networks

 Generalization of Curtis and Morrow’s results in 2000

Theorem

(P,Q) circular pair -of size k- of δ(F ), where P and Q are disjoint arcs of
the boundary circle

(P,Q) not connected through Γ ⇔ det (DNq(P; Q)) = 0.

(P,Q) connected through Γ ⇔ (−1)k det (DNq(P; Q)) > 0.
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Partial inverse BVPs on finite networks

Corollary (Boundary Spike formula)

If xy is a boundary spike with y ∈ δ(F ) and contracting xy to a single
boundary vertex means breaking the connection through Γ between a
circular pair (P,Q), then

c(x, y) =
ω(y)

ω(x)

(
DNq(y; y)− DNq(y; Q) · DNq(P; Q)

−1 · DNq(P; y)− λ
)

 We can recover certain conductances on planar networks!

 We can try to recover all the conductances in special cases:
well-connected spider networks
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Conductance reconstruction on
well-connected spider networks
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Conductance reconstruction on w-c spider networks

 A well-connected spider network has n ≡ 3(mod 4) boundary nodes

and m =
n− 3

4
circles

vSn

vS1

vS2

vS3

xS
00

F

δ(F )

xS
ji

circle i

radius j
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Conductance reconstruction on w-c spider networks

Remark

Taking A = {vS1 , . . . , vSn−1
2

}, B = {vSn+1
2

, . . . , vSn−1} and R = {vSn} (or

equivalent configurations), then A and B is a circular pair always
connected through the network

R

R
A

B

A

B
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Reconstruction - Step 1

 Boundary spike formula

A
R

B
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Reconstruction - Step 2

 We choose f = εvSn and g = 0

 Considering problem


Lq

S
(u) = 0 on FS

∂u

∂n
F

S

= u = 0 on A

u = 1 on R = {vSn},

then

uB = −DNq
S
(A; B)−1 · DNq

S
(A; vS

n)
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Reconstruction - Step 3

 Moreover, we obtain a zero zone of the solution of this BVP problem

R

R
A

B

A

B
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Reconstruction - Step 4

 We also get to know the values of u on the neighbours of B

uN(B) = uB − Lq
S
(B; N(B))−1 ·

(
DNq

S
(B; vS

n) + DNq
S
(B; B) · uB

)
↑ ↑ ↑ ↑ ↑

already known!
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Reconstruction - Step 5

 With this information, we obtain two new conductances

A
R

B
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Reconstruction - Step 6

 ...and rotating the BVP, we obtain more conductances

A
R

B
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Reconstruction - Step 7

 Now we can even obtain two more conductances

A
R

B

Cristina Araúz (UPC) Partial BVPs on finite networks SIMBa, 26/11/2012 40 / 45



Reconstruction - Step 8

 ...and rotating the BVP again,

A
R

B
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Reconstruction - Step 9 and forward

 Working analogously, we finally get all the conductances

A
R

B
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Gràcies!
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