Partial boundary value problems on finite networks

Cristina Araúz ${ }^{1}$,
 Ángeles Carmona ${ }^{1}$ and Andrés M. Encinas ${ }^{1}$

SIMBa

Seminari Informal de Matemàtiques de Barcelona
${ }^{1}$ Dept. Matemàtica Aplicada III
Universitat Politècnica de Catalunya, Barcelona

Some definitions

Some definitions

$\Gamma=(V, c)$ network, c conductances on the edges

Some definitions

$\Gamma=(V, c)$ network, c conductances on the edges
$F \subset V$ proper and connected subset, $\quad \delta(F)$ boundary of F

Some definitions

$\Gamma=(V, c) \quad$ network, $\quad c$ conductances on the edges
$F \subset V$ proper and connected subset, $\quad \delta(F)$ boundary of F

Some definitions

$\Gamma=(V, c) \quad$ network, $\quad c$ conductances on the edges
$F \subset V$ proper and connected subset, $\quad \delta(F)$ boundary of F

Some definitions

$\Gamma=(V, c)$ network, c conductances on the edges
$F \subset V$ proper and connected subset, $\quad \delta(F)$ boundary of F
$A, B \subset \delta(F)$ non-empty subsets, $\quad A \cup B \neq \emptyset$
$R=\delta(F) \backslash(A \cup B)$
partition of the boundary

Our objective

Our objective

\leadsto Main objective: to obtain the conductances of the network by means of solving partial boundary value problems (BVPs)

Our objective

\leadsto Main objective: to obtain the conductances of the network by means of solving partial boundary value problems (BVPs)
\leadsto We assume the network is in an electrical equilibrium state

Our objective

\leadsto Main objective: to obtain the conductances of the network by means of solving partial boundary value problems (BVPs)
\leadsto We assume the network is in an electrical equilibrium state
\leadsto We assume some information on the boundary to be known, as it can be phisically obtained from electrical boundary measurements

Our objective

\leadsto Main objective: to obtain the conductances of the network by means of solving partial boundary value problems (BVPs)
\leadsto We assume the network is in an electrical equilibrium state
\leadsto We assume some information on the boundary to be known, as it can be phisically obtained from electrical boundary measurements

However, instead of having classical boundary information (simple information in all the boundary) we assume to have
R simple information
A double information
B no information at all!

Our objective

\leadsto The Inverse BVPs arised in 1950 due to Calderón's work

Our objective

\leadsto The Inverse BVPs arised in 1950 due to Calderón's work
\rightsquigarrow Medical purposes: Electrical Impedance Tomography

Some more definitions

Some more definitions

Some more definitions

$\mathcal{L}: \mathcal{C}(\bar{F}) \longrightarrow \mathcal{C}(\bar{F}) \quad$ Laplacian of $\Gamma \quad u \in \mathcal{C}(\bar{F})$

$$
x \in F \quad \rightsquigarrow \quad \mathcal{L}(u)(x)=\sum_{y \in \bar{F}} c(x, y)(u(x)-u(y))
$$

Some more definitions

$\mathcal{L}: \mathcal{C}(\bar{F}) \longrightarrow \mathcal{C}(\bar{F}) \quad$ Laplacian of $\Gamma \quad u \in \mathcal{C}(\bar{F})$

$$
x \in F \quad \rightsquigarrow \quad \mathcal{L}(u)(x)=\sum_{y \in \bar{F}} c(x, y)(u(x)-u(y))
$$

$$
x \in \delta(F) \rightsquigarrow \quad \mathcal{L}(u)(x)=\sum_{y \in F}^{y \in \bar{F}} c(x, y)(u(x)-u(y))=\frac{\partial u}{\partial \mathrm{n}_{F}}(x)
$$

normal derivative

Some more definitions

$$
\mathcal{L}_{q}(u)=\mathcal{L}(u)+q u \quad \text { Schrödinger operator of } \Gamma
$$

Some more definitions

$$
\begin{aligned}
& \mathcal{L}_{q}(u)=\mathcal{L}(u)+q u \quad \text { Schrödinger operator of } \Gamma \\
& \omega \in \mathcal{C}^{+}(\bar{F}) \quad \text { weight on } \bar{F} \quad \Leftrightarrow \quad \sum_{x \in \bar{F}} \omega^{2}(x)=1
\end{aligned}
$$

Some more definitions

$$
\begin{aligned}
& \mathcal{L}_{q}(u)=\mathcal{L}(u)+q u \quad \text { Schrödinger operator of } \Gamma \\
& \omega \in \mathcal{C}^{+}(\bar{F}) \quad \text { weight on } \bar{F} \quad \Leftrightarrow \quad \sum_{x \in \bar{F}} \omega^{2}(x)=1 \\
& q_{\omega}=-\omega^{-1} \mathcal{L}(\omega) \quad \text { Potential given by } \omega
\end{aligned}
$$

Some more definitions

$$
\begin{aligned}
& \mathcal{L}_{q}(u)=\mathcal{L}(u)+q u \quad \text { Schrödinger operator of } \Gamma \\
& \omega \in \mathcal{C}^{+}(\bar{F}) \quad \text { weight on } \bar{F} \quad \Leftrightarrow \quad \sum_{x \in \bar{F}} \omega^{2}(x)=1 \\
& q_{\omega}=-\omega^{-1} \mathcal{L}(\omega) \quad \text { Potential given by } \omega
\end{aligned}
$$

Lemma (Bendito, Carmona, Encinas 2005)
\mathcal{L}_{q} positive definite on $\mathcal{C}(F) \Leftrightarrow$ there exists a weight ω such that $q \geq q_{\omega}$

Some more definitions

$$
\begin{aligned}
& \mathcal{L}_{q}(u)=\mathcal{L}(u)+q u \quad \text { Schrödinger operator of } \Gamma \\
& \omega \in \mathcal{C}^{+}(\bar{F}) \quad \text { weight on } \bar{F} \quad \Leftrightarrow \quad \sum_{x \in \bar{F}} \omega^{2}(x)=1 \\
& q_{\omega}=-\omega^{-1} \mathcal{L}(\omega) \quad \text { Potential given by } \omega
\end{aligned}
$$

Lemma (Bendito, Carmona, Encinas 2005)
\mathcal{L}_{q} positive definite on $\mathcal{C}(F) \Leftrightarrow$ there exists a weight ω such that $q \geq q_{\omega}$
\rightsquigarrow We work with potentials of the form $q=q_{\omega}+\lambda$, where $\lambda \geq 0$

Partial Dirichlet-Neumann boundary value problems

Partial Dirichlet-Neumann BVPs

Definition (Partial Dirichlet-Neumann BVP on F)

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =h & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

Partial Dirichlet-Neumann BVPs

Definition (Homogeneous partial Dirichlet-Neumann BVP)

$$
\left\{\begin{aligned}
\mathcal{L}_{q}\left(u_{h}\right) & =0 \quad \text { on } F \\
\frac{\partial u_{h}}{\partial \mathrm{n}_{\mathrm{F}}} & =0 \quad \text { on } A \\
u_{h} & =0 \quad \text { on } A \cup R
\end{aligned}\right.
$$

its solutions are a vector subspace of $\mathcal{C}(F \cup B)$ that we denote by \mathcal{V}_{B}

Partial Dirichlet-Neumann BVPs

Definition (Adjoint partial Dirichlet-Neumann BVP)

$$
\left\{\begin{aligned}
\mathcal{L}_{q}\left(u_{a}\right) & =0 & & \text { on } F \\
\frac{\partial u_{a}}{\partial \mathrm{n}_{\mathrm{F}}} & =0 & & \text { on } B \\
u_{a} & =0 & & \text { on } B \cup R
\end{aligned}\right.
$$

its solutions are a vector subspace of $\mathcal{C}(F \cup A)$ that we denote by \mathcal{V}_{A}

Partial Dirichlet-Neumann BVPs

Remember our partial BVP $\left\{\begin{aligned} \mathcal{L}_{q}(u) & =h & & \text { on } F \\ \frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\ u & =f & & \text { on } A \cup R\end{aligned}\right.$

Partial Dirichlet-Neumann BVPs

Remember our partial BVP $\left\{\begin{aligned} \mathcal{L}_{q}(u) & =h & & \text { on } F \\ \frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\ u & =f & & \text { on } A \cup R\end{aligned}\right.$
Theorem

$$
|A|-|B|=\operatorname{dim} \mathcal{V}_{A}-\operatorname{dim} \mathcal{V}_{B}
$$

Partial Dirichlet-Neumann BVPs

Remember our partial BVP

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =h & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

Theorem

$$
|A|-|B|=\operatorname{dim} \mathcal{V}_{A}-\operatorname{dim} \mathcal{V}_{B}
$$

\rightsquigarrow Existence of solution for any data $h, g, f \Leftrightarrow \mathcal{V}_{A}=\{0\}$

Partial Dirichlet-Neumann BVPs

Remember our partial BVP

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =h & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

Theorem

$$
|A|-|B|=\operatorname{dim} \mathcal{V}_{A}-\operatorname{dim} \mathcal{V}_{B}
$$

\rightsquigarrow Existence of solution for any data $h, g, f \Leftrightarrow \mathcal{V}_{A}=\{0\}$
\rightsquigarrow Uniqueness of solution for any data $h, g, f \Leftrightarrow \mathcal{V}_{B}=\{0\}$

Partial Dirichlet-Neumann BVPs

Remember our partial BVP

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =h & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

Theorem

$$
|A|-|B|=\operatorname{dim} \mathcal{V}_{A}-\operatorname{dim} \mathcal{V}_{B}
$$

\rightsquigarrow Existence of solution for any data $h, g, f \Leftrightarrow \mathcal{V}_{A}=\{0\}$
\rightsquigarrow Uniqueness of solution for any data $h, g, f \Leftrightarrow \mathcal{V}_{B}=\{0\}$
\rightsquigarrow In particular, if $|A|=|B|$ then
existence \Leftrightarrow uniqueness \Leftrightarrow the homogeneous problem has $u=0$ as its unique solution

Partial Dirichlet-Neumann BVPs

Remember our partial BVP $\left\{\begin{aligned} \mathcal{L}_{q}(u) & =h & & \text { on } F \\ \frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\ u & =f & & \text { on } A \cup R\end{aligned}\right.$
\leadsto We work with boundaries where $|A|=|B|$ and assume there exists a unique solution $u \in \mathcal{C}(\bar{F})$

Partial Dirichlet-Neumann BVPs

Remember our partial BVP

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =h & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

\leadsto We work with boundaries where $|A|=|B|$ and assume there exists a unique solution $u \in \mathcal{C}(\bar{F})$

Question
 Can we find the solution?

Partial Dirichlet-Neumann BVPs

Remember our partial BVP

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =h & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

\leadsto We work with boundaries where $|A|=|B|$ and assume there exists a unique solution $u \in \mathcal{C}(\bar{F})$

Question
 Can we find the solution?

Remark

We need Green and Poisson operators!

Classical Green and Poisson operators

Classical Green and Poisson operators

\leadsto The classical Green operator \mathcal{G}_{q} solves the problem

$$
\left\{\begin{aligned}
\mathcal{L}_{q}\left(\mathcal{G}_{q}(h)\right)=h & \text { on } F \\
\mathcal{G}_{q}(h)=0 & \text { on } \delta(F)
\end{aligned}\right.
$$

Classical Green and Poisson operators

\rightsquigarrow The classical Green operator \mathcal{G}_{q} solves the problem

$$
\left\{\begin{aligned}
\mathcal{L}_{q}\left(\mathcal{G}_{q}(h)\right)=h & \text { on } F \\
\mathcal{G}_{q}(h)=0 & \text { on } \delta(F)
\end{aligned}\right.
$$

\leadsto The classical Poisson operator \mathcal{P}_{q} solves the problem

$$
\left\{\begin{aligned}
\mathcal{L}_{q}\left(\mathcal{P}_{q}(f)\right)=0 & \text { on } F \\
\mathcal{P}_{q}(f)=f & \text { on } \delta(F)
\end{aligned}\right.
$$

Classical Green and Poisson operators

\rightsquigarrow The classical Green operator \mathcal{G}_{q} solves the problem

$$
\left\{\begin{aligned}
\mathcal{L}_{q}\left(\mathcal{G}_{q}(h)\right)=h & \text { on } F \\
\mathcal{G}_{q}(h)=0 & \text { on } \delta(F)
\end{aligned}\right.
$$

\leadsto The classical Poisson operator \mathcal{P}_{q} solves the problem

$$
\left\{\begin{aligned}
\mathcal{L}_{q}\left(\mathcal{P}_{q}(f)\right)=0 & \text { on } F \\
\mathcal{P}_{q}(f)=f & \text { on } \delta(F)
\end{aligned}\right.
$$

However, our problem is different on the boundary

Classical Green and Poisson operators

\rightsquigarrow The classical Green operator \mathcal{G}_{q} solves the problem

$$
\left\{\begin{aligned}
\mathcal{L}_{q}\left(\mathcal{G}_{q}(h)\right)=h & \text { on } F \\
\mathcal{G}_{q}(h)=0 & \text { on } \delta(F)
\end{aligned}\right.
$$

\leadsto The classical Poisson operator \mathcal{P}_{q} solves the problem

$$
\left\{\begin{aligned}
\mathcal{L}_{q}\left(\mathcal{P}_{q}(f)\right)=0 & \text { on } F \\
\mathcal{P}_{q}(f)=f & \text { on } \delta(F)
\end{aligned}\right.
$$

However, our problem is different on the boundary
$\Rightarrow \quad$ We need to modify these operators (we will see it later)

Dirichlet-to-Neumann map

Dirichlet-to-Neumann map

Before modifying Green and Poisson operators, we need to define the Dirichlet-to-Neumann map as

$$
\Lambda_{q}(g)=\frac{\partial \mathcal{P}_{q}(g)}{\partial \mathrm{n}_{\mathrm{F}}} \chi_{\delta(F)} \quad \text { for all } \quad g \in \mathcal{C}(\delta(F))
$$

Dirichlet-to-Neumann map

Before modifying Green and Poisson operators, we need to define the Dirichlet-to-Neumann map as

$$
\Lambda_{q}(g)=\frac{\partial \mathcal{P}_{q}(g)}{\partial \mathrm{n}_{\mathrm{F}}} \chi_{\delta(F)} \quad \text { for all } \quad g \in \mathcal{C}(\delta(F))
$$

with kernel $D N_{q}: \quad \delta(F) \times \delta(F) \longrightarrow \mathbb{R} \quad$ given by

$$
\begin{array}{r}
(x, y) \\
\Lambda_{q}(g)(x)=\int_{\delta(F)} D N_{q}(x, y) \\
N_{q}(x, y) g(y) d y
\end{array}
$$

Dirichlet-to-Neumann map

Before modifying Green and Poisson operators, we need to define the Dirichlet-to-Neumann map as

$$
\Lambda_{q}(g)=\frac{\partial \mathcal{P}_{q}(g)}{\partial \mathrm{n}_{\mathrm{F}}} \chi_{\delta(F)} \quad \text { for all } \quad g \in \mathcal{C}(\delta(F))
$$

with kernel $D N_{q}: \quad \delta(F) \times \delta(F) \longrightarrow \mathbb{R} \quad$ given by

$$
(x, y) \quad \longmapsto D N_{q}(x, y)
$$

$$
\Lambda_{q}(g)(x)=\int_{\delta(F)} D N_{q}(x, y) g(y) d y
$$

that is, $\quad D N_{q}(x, y)=\Lambda_{q}\left(\varepsilon_{y}\right)(x) \quad$ for all $\quad x, y \in \delta(F)$

Dirichlet-to-Neumann map - a little remark

Definition (Schur complement)
$A \in \mathcal{M}_{k \times k}(\mathbb{R}), B \in \mathcal{M}_{k \times l}(\mathbb{R}), C \in \mathcal{M}_{l \times k}(\mathbb{R})$ and $D \in \mathcal{M}_{l \times l}(\mathbb{R})$ with D non-singular
The Schur Complement of D on M, where $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$, is

$$
M /{ }_{D}=A-B D^{-1} C \in \mathcal{M}_{k \times k}(\mathbb{R})
$$

Dirichlet-to-Neumann map - a little remark

Definition (Schur complement)

$$
M=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right] \Rightarrow \quad M / D=A-B D^{-1} C
$$

Theorem

The Dirichlet-to-Neumann map kernel DN_{q} can be expressed as a Schur complement:

$$
\mathrm{DN}_{\mathrm{q}}(\delta(\mathrm{~F}) ; \delta(\mathrm{F}))=\mathrm{L}_{\mathrm{q}}(\overline{\mathrm{~F}} ; \mathbf{F}) / \mathrm{L}_{\mathrm{q}}(\mathrm{~F} ; \mathrm{F})
$$

Dirichlet-to-Neumann map - a little remark

Definition (Schur complement)

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \Rightarrow \quad M / D=A-B D^{-1} C
$$

Theorem

The Dirichlet-to-Neumann map kernel DN_{q} can be expressed as a Schur complement:

$$
\mathrm{DN}_{\mathbf{q}}(\delta(\mathrm{F}) ; \delta(\mathrm{F}))={ }^{\mathrm{L}_{\mathbf{q}}(\overline{\mathrm{F}} ; \mathbf{F})} / \mathrm{L}_{\mathbf{q}}(\mathrm{F} ; \mathrm{F})
$$

Corollary
If $P, Q \subseteq \delta(F)$, then

$$
\mathrm{DN}_{\mathrm{q}}(\mathrm{P} ; \mathrm{Q})=\mathrm{L}_{\mathrm{q}}(\mathrm{P} \cup \mathrm{~F} ; \mathrm{Q} \cup F) / \mathrm{L}_{\mathrm{q}}(\mathrm{~F} ; \mathrm{F})
$$

Modified Green and Poisson operators

Modified Green and Poisson operators

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =h & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

Using the Dirichlet-to-Neumann map, we can translate
Theorem

$$
|A|-|B|=\operatorname{dim} \mathcal{V}_{A}-\operatorname{dim} \mathcal{V}_{B}
$$

\rightsquigarrow Existence of solution for any data $h, g, f \Leftrightarrow \mathcal{V}_{A}=\{0\}$
\rightsquigarrow Uniqueness of solution for any data $h, g, f \Leftrightarrow \mathcal{V}_{B}=\{0\}$
\rightsquigarrow In particular, if $|A|=|B|$ then
existence \Leftrightarrow uniqueness \Leftrightarrow the homogeneous problem has $u=0$ as its unique solution

Modified Green and Poisson operators

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =h & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

Into

Theorem

\rightsquigarrow It has solution for any data $\Leftrightarrow \mathrm{DN}_{\mathrm{q}}(\mathrm{B} ; \mathrm{A})$ has maximum range
\rightsquigarrow It has uniqueness of solution for any data $\Leftrightarrow \mathrm{DN}_{\mathrm{q}}(\mathrm{A} ; \mathrm{B})$ has maximum range
\rightsquigarrow In particular, if $|A|=|B|$ then it has a unique solution for any data
$\Leftrightarrow \mathrm{DN}_{\mathrm{q}}(\mathrm{A} ; \mathrm{B})$ non-singular $\Leftrightarrow \mathrm{DN}_{\mathrm{q}}(\mathrm{B} ; \mathrm{A})$ non-singular

Modified Green and Poisson operators

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =h & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

Into

Theorem

\rightsquigarrow It has solution for any data $\Leftrightarrow \mathrm{DN}_{\mathrm{q}}(\mathrm{B} ; \mathrm{A})$ has maximum range
\rightsquigarrow It has uniqueness of solution for any data $\Leftrightarrow \mathrm{DN}_{\mathrm{q}}(\mathrm{A} ; \mathrm{B})$ has maximum range
\rightsquigarrow In particular, if $|A|=|B|$ then it has a unique solution for any data
$\Leftrightarrow \mathrm{DN}_{\mathrm{q}}(\mathrm{A} ; \mathrm{B})$ non-singular $\Leftrightarrow \mathrm{DN}_{\mathrm{q}}(\mathrm{B} ; \mathrm{A})$ non-singular
\leadsto From now on, we assume that $\mathrm{DN}_{\mathrm{q}}(\mathrm{A} ; \mathrm{B})$ is invertible

Modified Green and Poisson operators

The unique solution of

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =h & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

can be expressed as $u=\widetilde{\mathcal{G}}_{q}(h)+\widetilde{\mathcal{N}}_{q}(g)+\widetilde{\mathcal{P}}_{q}(f)$ on \bar{F}

Modified Green and Poisson operators

The unique solution of

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =h & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

can be expressed as $u=\widetilde{\mathcal{G}}_{q}(h)+\widetilde{\mathcal{N}}_{q}(g)+\widetilde{\mathcal{P}}_{q}(f)$ on \bar{F}, where

$$
\left\{\begin{array} { r l r l }
{ \mathcal { L } _ { q } (\widetilde { \mathcal { G } } _ { q } (h)) } & { = h } \\
{ \frac { \partial \widetilde { \mathcal { G } } _ { q } (h) } { \partial \mathrm { n } _ { \mathrm { F } } } } & { = 0 } \\
{ \widetilde { \mathcal { G } } _ { q } (h) } & { = 0 }
\end{array} \quad \left\{\begin{array} { r l r l }
{ \mathcal { L } _ { q } (\widetilde { \mathcal { N } } _ { q } (g)) } & { = 0 } \\
{ \frac { \partial \widetilde { \mathcal { N } } _ { q } (g) } { \partial \mathrm { n } _ { \mathrm { F } } } } & { = g } \\
{ \widetilde { \mathcal { N } } _ { q } (g) } & { = 0 }
\end{array} \quad \left\{\begin{array}{rlrl}
\mathcal{L}_{q}\left(\widetilde{\mathcal{P}}_{q}(h)\right)=0 & & \text { on } F \\
\frac{\partial \widetilde{\mathcal{P}}_{q}(h)}{\partial \mathrm{n}_{\mathrm{F}}}=0 & & \text { on } A \\
\widetilde{\mathcal{P}}_{q}(h)=f & & \text { on } A \cup R
\end{array}\right.\right.\right.
$$

Modified Green and Poisson operators

The unique solution of

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =h & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

can be expressed as $u=\widetilde{\mathcal{G}}_{q}(h)+\widetilde{\mathcal{N}}_{q}(g)+\widetilde{\mathcal{P}}_{q}(f)$ on \bar{F}, where

$$
\left\{\begin{array} { r l r l }
{ \mathcal { L } _ { q } (\widetilde { \mathcal { G } } _ { q } (h)) } & { = h } \\
{ \frac { \partial \widetilde { \mathcal { G } } _ { q } (h) } { \partial \mathrm { n } _ { \mathrm { F } } } } & { = 0 } \\
{ \widetilde { \mathcal { G } } _ { q } (h) } & { = 0 }
\end{array} \quad \left\{\begin{array} { r l r }
{ \mathcal { L } _ { q } (\widetilde { \mathcal { N } } _ { q } (g)) = 0 } \\
{ \frac { \partial \widetilde { \mathcal { N } } _ { q } (g) } { \partial \mathrm { n } _ { \mathrm { F } } } } & { = g } \\
{ \widetilde { \mathcal { N } } _ { q } (g) } & { = 0 }
\end{array} \quad \left\{\begin{array}{rlr}
\mathcal{L}_{q}\left(\widetilde{\mathcal{P}}_{q}(h)\right)=0 & & \text { on } F \\
\frac{\partial \widetilde{\mathcal{P}}_{q}(h)}{\partial \mathrm{n}_{\mathrm{F}}}=0 & & \text { on } A \\
\widetilde{\mathcal{P}}_{q}(h)=f & & \text { on } A \cup R
\end{array}\right.\right.\right.
$$

Modified Green operator

Modified Green and Poisson operators

The unique solution of

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =h & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

can be expressed as $u=\widetilde{\mathcal{G}}_{q}(h)+\widetilde{\mathcal{N}}_{q}(g)+\widetilde{\mathcal{P}}_{q}(f)$ on \bar{F}, where

$$
\begin{aligned}
& \left\{\begin{aligned}
\mathcal{L}_{q}\left(\widetilde{\mathcal{G}}_{q}(h)\right) & =h \\
\frac{\partial \widetilde{\mathcal{G}}_{q}(h)}{\partial \mathrm{n}_{\mathrm{F}}} & =0 \\
\widetilde{\mathcal{G}}_{q}(h) & =0
\end{aligned}\right. \\
& \left\{\begin{aligned}
\mathcal{L}_{q}\left(\widetilde{\mathcal{N}}_{q}(g)\right) & =0 \\
\frac{\partial \widetilde{\mathcal{N}}_{q}(g)}{\partial \mathrm{n}_{\mathrm{F}}} & =g \\
\tilde{\mathcal{N}}_{q}(g) & =0
\end{aligned}\right. \\
& \left\{\begin{array}{rlrl}
\mathcal{L}_{q}\left(\widetilde{\mathcal{P}}_{q}(h)\right)=0 & & \text { on } F \\
\frac{\partial \widetilde{\mathcal{P}}_{q}(h)}{\partial \mathrm{n}_{\mathrm{F}}} & =0 & & \text { on } A \\
\widetilde{\mathcal{P}}_{q}(h)=f & & \text { on } A \cup R
\end{array}\right.
\end{aligned}
$$

Modified Green operator

Modified Green and Poisson operators

The unique solution of

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =h & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

can be expressed as $u=\widetilde{\mathcal{G}}_{q}(h)+\widetilde{\mathcal{N}}_{q}(g)+\widetilde{\mathcal{P}}_{q}(f)$ on \bar{F}, where

$$
\begin{aligned}
& \left\{\begin{aligned}
\mathcal{L}_{q}\left(\widetilde{\mathcal{G}}_{q}(h)\right) & =h \\
\frac{\partial \widetilde{\mathcal{G}}_{q}(h)}{\partial \mathrm{n}_{\mathrm{F}}} & =0 \\
\widetilde{\mathcal{G}}_{q}(h) & =0
\end{aligned}\right. \\
& \text { Modified Green } \\
& \text { operator } \\
& \left\{\begin{aligned}
\mathcal{L}_{q}\left(\widetilde{\mathcal{N}}_{q}(g)\right) & =0 \\
\frac{\partial \widetilde{\mathcal{N}}_{q}(g)}{\partial \mathrm{n}_{\mathrm{F}}} & =g \\
\tilde{\mathcal{N}}_{q}(g) & =0
\end{aligned}\right. \\
& \text { Modified Neumann } \\
& \text { operator } \\
& \left\{\begin{aligned}
\mathcal{L}_{q}\left(\widetilde{\mathcal{P}}_{q}(h)\right)=0 & \text { on } F \\
\frac{\partial \widetilde{\mathcal{P}}_{q}(h)}{\partial \mathrm{n}_{\mathrm{F}}} & =0 \\
& \text { on } A
\end{aligned}\right. \\
& \widetilde{\mathcal{P}}_{q}(h)=f \quad \text { on } A \cup R \\
& \text { Modified Poisson } \\
& \text { operator }
\end{aligned}
$$

Modified Green and Poisson operators

\rightsquigarrow We express these modified operators in terms of the classical ones and the matrix $\mathrm{DN}_{\mathrm{q}}(\mathrm{A} ; \mathrm{B})$

Modified Green and Poisson operators

\leadsto We express these modified operators in terms of the classical ones and the matrix $\mathrm{DN}_{\mathrm{q}}(\mathrm{A} ; \mathrm{B})$

0 Remark

We can not express them in operator terms, as we need to invert a matrix. However, we can do it in matricial terms

Modified Green and Poisson operators

Theorem

$$
\begin{aligned}
\widetilde{\mathrm{G}_{\mathrm{q}}}(F ; F) & =\mathrm{G}_{\mathrm{q}}(F ; F)-\mathrm{P}_{\mathrm{q}}(F ; B) \cdot \mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \cdot \mathrm{~L}_{\mathrm{q}}(A ; F) \cdot \mathrm{G}_{\mathrm{q}}(F ; F) \\
\widetilde{\mathrm{G}_{\mathrm{q}}}(A \cup R ; F) & =0 \\
\widetilde{\mathrm{G}_{\mathrm{q}}}(B ; F) & =-\mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \cdot \mathrm{~L}_{\mathrm{q}}(A ; F) \cdot \mathrm{G}_{\mathrm{q}}(F ; F)
\end{aligned}
$$

Modified Green and Poisson operators

Theorem

$$
\begin{aligned}
& \widetilde{\mathrm{G}_{\mathrm{q}}}(F ; F)= \mathrm{G}_{\mathrm{q}}(F ; F)-\mathrm{P}_{\mathrm{q}}(F ; B) \cdot \mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \cdot \mathrm{~L}_{\mathrm{q}}(A ; F) \cdot \mathrm{G}_{\mathrm{q}}(F ; F) \\
& \widetilde{\mathrm{G}_{\mathrm{q}}}(A \cup R ; F)= 0 \\
& \widetilde{\mathrm{G}_{\mathrm{q}}}(B ; F)=-\mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \cdot \mathrm{~L}_{\mathrm{q}}(A ; F) \cdot \mathrm{G}_{\mathrm{q}}(F ; F) \\
& \widetilde{\mathrm{N}_{\mathrm{q}}}(F ; A)=\mathrm{P}_{\mathrm{q}}(F ; B) \cdot \mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \\
& \widetilde{\mathrm{~N}_{\mathrm{q}}}(A \cup R ; A)=0 \\
& \widetilde{\mathrm{~N}_{\mathrm{q}}}(B ; A)=\mathrm{DN}_{\mathrm{q}}(A ; B)^{-1}
\end{aligned}
$$

Modified Green and Poisson operators

Theorem

$$
\begin{aligned}
& \widetilde{\mathrm{G}_{\mathrm{q}}}(F ; F)= \mathrm{G}_{\mathrm{q}}(F ; F)-\mathrm{P}_{\mathrm{q}}(F ; B) \cdot \mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \cdot \mathrm{~L}_{\mathrm{q}}(A ; F) \cdot \mathrm{G}_{\mathrm{q}}(F ; F) \\
& \widetilde{\mathrm{G}_{\mathrm{q}}}(A \cup R ; F)= 0 \\
& \widetilde{\mathrm{G}_{\mathrm{q}}}(B ; F)=-\mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \cdot \mathrm{~L}_{\mathrm{q}}(A ; F) \cdot \mathrm{G}_{\mathrm{q}}(F ; F) \\
& \widetilde{\mathrm{N}_{\mathrm{q}}}(F ; A)=\mathrm{P}_{\mathrm{q}}(F ; B) \cdot \mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \\
& \widetilde{\mathrm{~N}_{\mathrm{q}}}(A \cup R ; A)=0 \\
& \widetilde{\mathrm{~N}_{\mathrm{q}}}(B ; A)=\mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \\
& \widetilde{\mathrm{P}_{\mathrm{q}}}(F ; A \cup R)= \mathrm{P}_{\mathrm{q}}(F ; A \cup R)-\mathrm{P}_{\mathrm{q}}(F ; B) \cdot \mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \cdot \mathrm{DN}_{\mathrm{q}}(A ; A \cup R) \\
& \widetilde{\mathrm{P}_{\mathrm{q}}}(A \cup R ; A \cup R)= I_{A \cup R} \\
& \widetilde{\mathrm{P}_{\mathrm{q}}}(B ; A \cup R)=-\mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \cdot \mathrm{DN}_{\mathrm{q}}(A ; A \cup R)
\end{aligned}
$$

Modified Green and Poisson operators

Theorem

$$
\begin{aligned}
& \widetilde{\mathrm{G}_{\mathrm{q}}}(F ; F)= \mathrm{G}_{\mathrm{q}}(F ; F)-\mathrm{P}_{\mathrm{q}}(F ; B) \cdot \mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \cdot \mathrm{~L}_{\mathrm{q}}(A ; F) \cdot \mathrm{G}_{\mathrm{q}}(F ; F) \\
& \widetilde{\mathrm{G}_{\mathrm{q}}}(A \cup R ; F)= 0 \\
& \widetilde{\mathrm{G}_{\mathrm{q}}}(B ; F)=-\mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \cdot \mathrm{~L}_{\mathrm{q}}(A ; F) \cdot \mathrm{G}_{\mathrm{q}}(F ; F) \\
& \widetilde{\mathrm{N}_{\mathrm{q}}}(F ; A)=\mathrm{P}_{\mathrm{q}}(F ; B) \cdot \mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \\
& \widetilde{\mathrm{~N}_{\mathrm{q}}}(A \cup R ; A)=0 \\
& \widetilde{\mathrm{~N}_{\mathrm{q}}}(B ; A)=\mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \\
& \widetilde{\mathrm{P}_{\mathrm{q}}}(F ; A \cup R)= \mathrm{P}_{\mathrm{q}}(F ; A \cup R)-\mathrm{P}_{\mathrm{q}}(F ; B) \cdot \mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \cdot \mathrm{DN}_{\mathrm{q}}(A ; A \cup R) \\
& \widetilde{\mathrm{P}_{\mathrm{q}}}(A \cup R ; A \cup R)= I_{A \cup R} \\
& \widetilde{\mathrm{P}_{\mathrm{q}}}(B ; A \cup R)=-\mathrm{DN}_{\mathrm{q}}(A ; B)^{-1} \cdot \mathrm{DN}_{\mathrm{q}}(A ; A \cup R)
\end{aligned}
$$

\leadsto They can be expressed in terms of the classical Green and Poisson operators and of the Dirichlet-to-Neumann map

Partial inverse boundary value problems on finite networks

Partial inverse BVPs on finite networks

\leadsto We want to obtain the conductances by solving partial BVPs

Partial inverse BVPs on finite networks

\leadsto We want to obtain the conductances by solving partial BVPs
\rightsquigarrow We assume the network is in an equilibrium state

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =0 & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

Partial inverse BVPs on finite networks

\leadsto We want to obtain the conductances by solving partial BVPs
\rightsquigarrow We assume the network is in an equilibrium state

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =0 & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

\leadsto We also assume the Dirichlet-to-Neumann map Λ_{q} to be known, as it can be phisically obtained from electrical boundary measurements

Partial inverse BVPs on finite networks

\rightsquigarrow We want to obtain the conductances by solving partial BVPs
\rightsquigarrow We assume the network is in an equilibrium state

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =0 & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

\leadsto We also assume the Dirichlet-to-Neumann map Λ_{q} to be known, as it can be phisically obtained from electrical boundary measurements

§ Remark (Alessandrini 1998, Mandache 2001)

This problem is severelly ill-posed!

Partial inverse BVPs on finite networks

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =0 & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

Remember that under our conditions $(|A|=|B|$ and $\mathrm{DN}_{\mathrm{q}}(\mathrm{A} ; \mathrm{B})$ invertible) this problem has a unique solution

Partial inverse BVPs on finite networks

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =0 & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

Remember that under our conditions $(|A|=|B|$ and $\mathrm{DN}_{\mathrm{q}}(\mathrm{A} ; \mathrm{B})$ invertible) this problem has a unique solution

Corollary

The unique solution is characterized by the equations

$$
\begin{gathered}
\mathrm{u}_{\mathrm{B}}=\mathrm{DN}_{\mathrm{q}}(\mathrm{~A} ; \mathrm{B})^{-1} \cdot \mathrm{~g}-\mathrm{DN}_{\mathrm{q}}(\mathrm{~A} ; \mathrm{B})^{-1} \cdot \mathrm{DN}_{\mathrm{q}}(\mathrm{~A} ; \mathrm{A} \cup \mathrm{R}) \cdot \mathrm{f} \quad \text { on } B \\
u(x)=\mathrm{P}_{\mathrm{q}}(\mathrm{x} ; \mathrm{A} \cup \mathrm{R}) \cdot \mathrm{f}+\mathrm{P}_{\mathrm{q}}(\mathrm{x} ; \mathrm{B}) \cdot \mathrm{u}_{\mathrm{B}} \quad \text { for all } x \in F
\end{gathered}
$$

Partial inverse BVPs on finite networks

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =0 & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

Remember that under our conditions $(|A|=|B|$ and $\mathrm{DN}_{\mathrm{q}}(\mathrm{A} ; \mathrm{B})$ invertible) this problem has a unique solution

Corollary

The unique solution is characterized by the equations

$$
\begin{gathered}
\mathrm{u}_{\mathrm{B}}=\mathrm{DN}_{\mathrm{q}}(\mathrm{~A} ; \mathrm{B})^{-1} \cdot \mathrm{~g}-\mathrm{DN}_{\mathrm{q}}(\mathrm{~A} ; \mathrm{B})^{-1} \cdot \mathrm{DN}_{\mathrm{q}}(\mathrm{~A} ; \mathrm{A} \cup \mathrm{R}) \cdot \mathrm{f} \quad \text { on } B \\
u(x)=\mathrm{P}_{\mathrm{q}}(\mathrm{x} ; \mathrm{A} \cup \mathrm{R}) \cdot \mathrm{f}+\mathrm{P}_{\mathrm{q}}(\mathrm{x} ; \mathrm{B}) \cdot \mathrm{u}_{\mathrm{B}} \quad \text { for all } x \in F
\end{gathered}
$$

ORemark

Althogh u is not determined yet on F,

Partial inverse BVPs on finite networks

$$
\left\{\begin{aligned}
\mathcal{L}_{q}(u) & =0 & & \text { on } F \\
\frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}}} & =g & & \text { on } A \\
u & =f & & \text { on } A \cup R
\end{aligned}\right.
$$

Remember that under our conditions $(|A|=|B|$ and $\mathrm{DN}_{\mathrm{q}}(\mathrm{A} ; \mathrm{B})$ invertible) this problem has a unique solution

Corollary

The unique solution is characterized by the equations

$$
\begin{gathered}
\mathrm{u}_{\mathrm{B}}=\mathrm{DN}_{\mathrm{q}}(\mathrm{~A} ; \mathrm{B})^{-1} \cdot \mathrm{~g}-\mathrm{DN}_{\mathrm{q}}(\mathrm{~A} ; \mathrm{B})^{-1} \cdot \mathrm{DN}_{\mathrm{q}}(\mathrm{~A} ; \mathrm{A} \cup \mathrm{R}) \cdot \mathrm{f} \quad \text { on } B \\
u(x)=\mathrm{P}_{\mathrm{q}}(\mathrm{x} ; \mathrm{A} \cup \mathrm{R}) \cdot \mathrm{f}+\mathrm{P}_{\mathrm{q}}(\mathrm{x} ; \mathrm{B}) \cdot \mathrm{u}_{\mathrm{B}} \quad \text { for all } x \in F
\end{gathered}
$$

0 Remark

Althogh u is not determined yet on F, u_{B} gives the values of the solution on B !

Partial inverse BVPs on finite networks

\leadsto However, this is not enough

Partial inverse BVPs on finite networks

\leadsto However, this is not enough with all these last steps we only get to know u on $\delta(F)$ and no conductances

Partial inverse BVPs on finite networks

\rightsquigarrow However, this is not enough with all these last steps we only get to know u on $\delta(F)$ and no conductances
\leadsto We restrict to circular planar networks to obtain some conductances

Partial inverse BVPs on finite networks

\rightsquigarrow However, this is not enough with all these last steps we only get to know u on $\delta(F)$ and no conductances
\leadsto We restrict to circular planar networks to obtain some conductances

$$
\text { planar network } \Leftrightarrow \quad \begin{gathered}
\text { it can be drawn on the plane } \\
\text { without crossings between edges }
\end{gathered}
$$

Partial inverse BVPs on finite networks

\rightsquigarrow However, this is not enough with all these last steps we only get to know u on $\delta(F)$ and no conductances
\rightsquigarrow We restrict to circular planar networks to obtain some conductances
planar network $\Leftrightarrow \quad \begin{gathered}\text { it can be drawn on the plane } \\ \text { without crossings between edges }\end{gathered}$
circular planar network
planar \& all the boundary vertices can be found in the same (exterior) face

Partial inverse BVPs on finite networks

Partial inverse BVPs on finite networks

we will consider certain circular order on the boundary

Partial inverse BVPs on finite networks

a circular pair is connected through the network if there exists a set of disjoint paths between them

Partial inverse BVPs on finite networks

\leadsto Generalization of Curtis and Morrow's results in 2000

Theorem

(P, Q) circular pair -of size k - of $\delta(F)$, where P and Q are disjoint arcs of the boundary circle

- (P, Q) not connected through $\Gamma \Leftrightarrow \operatorname{det}\left(\mathrm{DN}_{\mathrm{q}}(\mathrm{P} ; \mathrm{Q})\right)=0$.
- (P, Q) connected through $\Gamma \Leftrightarrow(-1)^{k} \operatorname{det}\left(\mathrm{DN}_{\mathrm{q}}(\mathrm{P} ; \mathrm{Q})\right)>0$.

Partial inverse BVPs on finite networks

Corollary (Boundary Spike formula)

If $x y$ is a boundary spike with $y \in \delta(F)$ and contracting $x y$ to a single boundary vertex means breaking the connection through Γ between a circular pair (P, Q), then

$$
c(x, y)=\frac{\omega(y)}{\omega(x)}\left(\mathrm{DN}_{\mathrm{q}}(\mathrm{y} ; \mathrm{y})-\mathrm{DN}_{\mathrm{q}}(\mathrm{y} ; \mathrm{Q}) \cdot \mathrm{DN}_{\mathbf{q}}(\mathrm{P} ; \mathrm{Q})^{-1} \cdot \mathrm{DN}_{\mathrm{q}}(\mathrm{P} ; \mathrm{y})-\lambda\right)
$$

Partial inverse BVPs on finite networks

Corollary (Boundary Spike formula)

If $x y$ is a boundary spike with $y \in \delta(F)$ and contracting $x y$ to a single boundary vertex means breaking the connection through Γ between a circular pair (P, Q), then

$$
c(x, y)=\frac{\omega(y)}{\omega(x)}\left(\mathrm{DN}_{\mathbf{q}}(\mathrm{y} ; \mathrm{y})-\mathrm{DN}_{\mathrm{q}}(\mathrm{y} ; \mathrm{Q}) \cdot \mathrm{DN}_{\mathbf{q}}(\mathrm{P} ; \mathrm{Q})^{-1} \cdot \mathrm{DN}_{\mathbf{q}}(\mathrm{P} ; \mathrm{y})-\lambda\right)
$$

\leadsto We can recover certain conductances on planar networks!

Partial inverse BVPs on finite networks

Corollary (Boundary Spike formula)

If $x y$ is a boundary spike with $y \in \delta(F)$ and contracting $x y$ to a single boundary vertex means breaking the connection through Γ between a circular pair (P, Q), then

$$
c(x, y)=\frac{\omega(y)}{\omega(x)}\left(\mathrm{DN}_{\mathbf{q}}(\mathrm{y} ; \mathrm{y})-\mathrm{DN}_{\mathrm{q}}(\mathrm{y} ; \mathrm{Q}) \cdot \mathrm{DN}_{\mathbf{q}}(\mathrm{P} ; \mathrm{Q})^{-1} \cdot \mathrm{DN}_{\mathbf{q}}(\mathrm{P} ; \mathrm{y})-\lambda\right)
$$

\leadsto We can recover certain conductances on planar networks!
\leadsto We can try to recover all the conductances in special cases: well-connected spider networks

Conductance reconstruction on well-connected spider networks

Conductance reconstruction on w-c spider networks

\leadsto A well-connected spider network has $n \equiv 3(\bmod 4)$ boundary nodes and $m=\frac{n-3}{4}$ circles

Conductance reconstruction on w-c spider networks

Remark

Taking $A=\left\{v_{1}^{S}, \ldots, v_{\frac{n-1}{2}}^{S}\right\}, B=\left\{v_{\frac{n+1}{2}}^{S}, \ldots, v_{n-1}^{S}\right\}$ and $R=\left\{v_{n}^{S}\right\}$ (or equivalent configurations), then A and B is a circular pair always connected through the network

Reconstruction - Step 1

\leadsto Boundary spike formula

Reconstruction - Step 2

\rightsquigarrow We choose $f=\varepsilon_{v_{n}^{S}}$ and $g=0$

Reconstruction - Step 2

\rightsquigarrow We choose $f=\varepsilon_{v_{n}^{S}}$ and $g=0$
\rightsquigarrow Considering problem $\left\{\begin{aligned} \mathcal{L}_{q_{S}}(u) & =0 & & \text { on } F_{S} \\ \frac{\partial u}{\partial \mathrm{n}_{\mathrm{F}_{\mathrm{S}}}}=u & =0 & & \text { on } A \\ u & =1 & & \text { on } R=\left\{v_{n}^{S}\right\},\end{aligned} \quad\right.$ then

$$
\mathrm{u}_{\mathrm{B}}=-\mathrm{DN}_{\mathrm{q}_{\mathrm{s}}}(\mathrm{~A} ; \mathrm{B})^{-1} \cdot \mathrm{DN}_{\mathrm{q}_{\mathrm{s}}}\left(\mathrm{~A} ; \mathrm{v}_{\mathrm{n}}^{\mathrm{S}}\right)
$$

Reconstruction - Step 3

\leadsto Moreover, we obtain a zero zone of the solution of this BVP problem

Reconstruction - Step 4

\rightsquigarrow We also get to know the values of u on the neighbours of B

Reconstruction - Step 4

\leadsto We also get to know the values of u on the neighbours of B

$$
u_{N(B)}=u_{B}-L_{q_{s}}(B ; N(B))^{-1} \cdot\left(D N_{q_{s}}\left(B ; v_{n}^{s}\right)+D N_{q_{s}}(B ; B) \cdot u_{B}\right)
$$

Reconstruction - Step 4

\leadsto We also get to know the values of u on the neighbours of B

$$
\begin{gathered}
\mathrm{u}_{\mathrm{N}(\mathrm{~B})}=\mathrm{u}_{\mathrm{B}}-\mathrm{L}_{\mathrm{q}_{\mathrm{s}}}(\mathrm{~B} ; \mathrm{N}(\mathrm{~B}))^{-1} \cdot\left(\mathrm{DN}_{\mathrm{q}_{\mathrm{s}}}\left(\mathrm{~B} ; \mathrm{v}_{\mathrm{n}}^{\mathrm{S}}\right)+\mathrm{DN}_{\mathrm{q}_{\mathrm{s}}}(\mathrm{~B} ; \mathrm{B}) \cdot \mathrm{u}_{\mathrm{B}}\right) \\
\uparrow \\
\text { already known! }
\end{gathered}
$$

Reconstruction - Step 5

\leadsto With this information, we obtain two new conductances

Reconstruction - Step 6

\leadsto...and rotating the BVP, we obtain more conductances

Reconstruction - Step 7

\leadsto Now we can even obtain two more conductances

Reconstruction - Step 8

\rightsquigarrow...and rotating the BVP again,

Reconstruction - Step 9 and forward

\leadsto Working analogously, we finally get all the conductances

Reconstruction - Step 9 and forward

\leadsto Working analogously, we finally get all the conductances

Reconstruction - Step 9 and forward

\leadsto Working analogously, we finally get all the conductances

Gràcies!

