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Motivation

There exists the general idea that randomness and noise simply add an unsystematic
perturbation to a well-defined average behaviour.

I will present several examples of systems in which noise contributes to the
behaviour of the system in a non-trivial manner and it is fundamental to
understanding the system.

From these examples I will extract rules of thumb for ascertaining when randomness
plays a fundamental roles.

I will show you how to modelize some natural process in a better way than using a
continuous and deterministic approach.
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The Moran Process

The Moran process, named after the australian statistician Pat Moran, is a widely-used
variant of the Wright-Fisher model and is commonly used in population genetics.

N individuals of two types. N is keep fixed.

n: number of normal individuals. m: number of mutant individuals. N=m+n.

At each time step:

n→ n + 1 and m→ m − 1 with probability rate W+(n) = n
N

(
1− n

N

)
.

n→ n − 1 and m→ m + 1 with probability rate W−(n) = n
N

(
1− n

N

)
.
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The Moran Process

Note that W (n + 1) = W (n − 1), i.e. E[∆n] = E[n(t + ∆t)− n(t)] = 0.

This implies that with m = E[n]:

dm

dt
= 0 (1)

The system has two absorving states:
W+(n = 0) = W−(n = 0) = 0 and
W+(n = N) = W−(n = N) = 0

This means that

lim
t→∞

P(n(t) = 0 ∪ n(t) = N) = 1 (2)

This behaviour is not at all captured by the deterministic equation, which predicts
that the population will stay constant.
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The Moran Process

Simulation results:

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

Time

n

D. Sánchez-Taltavull (CRM) Stochastic modelling in Mathematical Biology March 4th 2013 7 / 37



Introduction Master Equation and Monte Carlo methods Kinetic Chemical Reactions and the Gillespie Stochastic Simulation Algorithm Examples

Logistic growth

The logistic equation,

dm

dt
= m

(
1− m

K

)
, (3)

has two steady states: m = 0 unstable and m = K stable, i.e. regardless of the
value of K and for any initial condition such that m(t = 0) > 0, m(t) will
asymptotically approach K .

Consider now a continuous-time Markov process nt whose dynamics are given by the
following transition rate:

n→ n + 1 with probability rate n.

n→ n − 1 with probability rate n(n−1)
2

1
K

.

This stochastic process has a unique absorbing state: n = 0, and therefore we
expect the stochastic dynamics to show strong discrepancies with Equation (3) when
randomness is dominant.
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Logistic growth
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Figure: Red line K = 10, green K = 50, blue K = 100, black K = 1000

We observe that for small K fluctuations dominate the behaviour of the system.
Extinctions are common for small K , in contradiction to the behaviour predicted by the
logistic equation Eq. (3), and become rarer as K is allowed to increase.
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Steady states vs Absorbing states

The definition of equilibrium states in stochastic systems is a bit technical and there
are several definitions of equilibrium.

Consider again the stochastic logistic growth, i.e. a process nt such that:

n→ n + 1 with probability rate W+(n) = n

n→ n − 1 with probability rate W−(n) = n(n−1)
2

1
K

Consider a state of system, ns , is, roughly speaking, a state of the process such that
W+(ns) = W−(ns).

W+(ns) is the number of births within a population of ns individuals
Likewise, W−(ns) = the number of deaths within a population ns individuals
So an steady state of our population dynamics is reached when nt = ns , since death
rate is balanced by birth rate and therefore the population stays roughly constant

ns = K which coincides with the deterministic stable fixed point.

Note that W+(n)−W−(n) > 0 if n < ns and W+(n)−W−(n) < 0 if n > ns
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Steady stats vs Absorbing states

An absorbing state, n0, is characterised by Wi (n0) = 0 i.e. once the system has
reached the absorbing state, it cannot leave anymore.

Consider again, the stochastic logistic growth rate, we have:

Steady states are in general not absorbing states.
W+(ns) 6= 0 and W+(ns) 6= 0.
If n = 0 then W+(0) = W−(0) = 0 therefore n = 0 is an absorbing state.

ns belongs to the set of accessible states of n = 0, that means there is at least one
consecutive set of transition that connects ns and n0. For Example:
K → K − 1→ K − 2→ · · · → 1→ 0.

However, if K � 1 the probability of such a chain of events is vanishingly small.
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Summary

ns is an steady state in the sense that births and deaths are balanced. Moreover,
W+(n)−W−(n) > 0 if n < ns and W+(n)−W−(n) < 0 if n > ns . This is
essentially equivalent to what happens in the deterministic logistic growth model.

However, ns is not an absorbing state of the stochastic dynamics. The only
absorbing state is n = 0.

Stochastic extinctions are relatively rare provided K is big. If this is the case, the
deterministic system provides a reasonable approximation to the behaviour of the
model.

If, on the contrary, K is small stochastic extinctions are relatively common and the
deterministic description is not an accurate one

We have seen several examples of stochastic systems in which noise and randomness
are the dominating factors. Their behaviours are not captured by their deterministic
conterparts.

In general, we should expect non-trivial random effects for small populations or
dynamics with absorbing states.
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The Master Equation

The Master Equation is our fundamental mathematical description of an stochastic
process and the starting point for any attempt to analyse a particular model.

It is obtained as a probability balance for all the events that can occur during the
time intertal (t, t + ∆t).

Mathematically, it is a set of ordinary differential equations for the probability
distribution P(n, t) i.e. the probability that the number of individuals in the
population at time t to be n.
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The Master Equation II

Example: Birth and death process

Birth n→ n + 1 with probability rate W+(n) = λn. Death: n→ n − 1 with
probability rate W−(n) = σn.

Probability balance:
P(n, t + ∆t) =
λ(n − 1)∆tP(n − 1, t) + σ(n + 1)∆tP(n + 1, t) + (1− (λn∆t + σn∆t))P(n, t).

When ∆t → 0:

dP(n, t)

dt
= λ(n − 1)P(n − 1, t) + σ(n + 1)P(n + 1, t)− (λn + σn)P(n, t)

Big Problem: In general is not possible to get the analytical solution of the Master
Equation, even a numerical solution of the Master Equation can be very hard.
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Monte Carlo Simulations

The first thoughts and attempts made to practice the Monte Carlo Method were
suggested by a question which occurred in 1946 to Stanislaw Ulam was convalescing
from an illness and playing solitaires. The question was what are the chances that a
Canfield solitaire laid out with 52 cards will come out successfully?

After spending a lot of time trying to estimate them by pure combinatorial
calculations, he wondered whether a more practical method than ”abstract thinking”
might not be to lay it out say one hundred times and simply observe and count the
number of successful plays.

In 1950s Stanislaw Ulam and John von Neumann started a research in this topic
founded by The RAND Corporation and the U.S. Air Force.

Uses of Monte Carlo methods require large amounts of random numbers, and it was
their use that spurred the development of pseudorandom number generators.
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Monte Carlo Simulations

There is no consensus on how Monte Carlo method should be defined.

Example: Approximate the value of π

Consider a random point P in the unit square, which is the probability that P is in the
unit circle?

The probability has to be the quotinet of the areas, that is
π

4
.

a Set Ok = 0
b Generate two random numbers x, y ∈ [−1, 1] if x2 + y2 < 1, then Ok = Ok + 1
c Repeat it N times. When N →∞, then Ok

N →
π
4
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A Chemical Reacting System

Molecules of N chemical species S1, ..., SN

Inside some volume Ω, at some temperature T .

Interacting through M elemental reaction channels R1, ...,RM .

Rj is assumed to describe a single instantaneous physical event which changes the
population of at least one species.
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Deterministic vs Stochastic

The time-evolution of chemical systems has traditionally been analyzed using continuous,
deterministic mathematics (ODEs, PDEs).
But in fact, chemical systems evolve

Discretely, because molecules come in integer numbers

Stochastically, for several reasons:

Even if all the molecules moved according to deterministic Newtonian mechanics, the
system is so sensitive to initial conditions that is behaviour will be random.
Chemical systems of practical interest are NEVER isolated. The reason why a system
is a temperature T is because it is having random exchanges of energy with its
environment.
All unimolecular reactions S → anything are inherently stochastic.

D. Sánchez-Taltavull (CRM) Stochastic modelling in Mathematical Biology March 4th 2013 21 / 37



Introduction Master Equation and Monte Carlo methods Kinetic Chemical Reactions and the Gillespie Stochastic Simulation Algorithm Examples

Deterministic vs Stochastic

For the simplest chemical reaction: S → ∅

Traditional wisdom asserts that X (t) ≡ the number of S molecules in the system at
time t, evolves according to the ODE

dX (t)

dt
= −cX (t). (4)

But physics =⇒ the S molecules react independently of each other.

The problem: There is no plausible physical mechanism that could give rise to such
exquisitely coordinated deterministic behavior!

The most reasonable mechanism for S → ∅ is that the lifetimes of the individual S
molecules are i.i.d. random variables. In that case (4) might describe how the
average S population evovles in time:

dXavg (t)

dt
= −cXavg (t). (5)

If the average S population evolves according to (5), then the lifetime of each S
molecule must be an exponential random variable with mean 1

c
, or equivalently,

c · dt= Prob{a given S−molecule will die in the next dt}
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Proof of this result:

With x0 molecules at time 0, the ODE (5) implies

Xavg (t) = x0e
−ct (t > 0)

Let f (τ) denote the cdf of the molecule lifetime. Then for any t > 0,
(1− f (t)) = the probability that any particular one of the x0 molecules at time 0
will stil be alive at time t.

So the probability that exactly x moelcules will be alive at this t time is:

(1− f (t))x(f (t))x0−x x0!

x!(x0 − x)!
.

From these expresions we obtain f (t) = 1− e−ct . This is the cdf of the exponential
random variable with mean 1

c
.

The corresponding pdf p(t) ≡ df (t)/dt = ce−ct is such that p(t)dt = Prob{ the
molecule will die in [t, t + dt)}. Thus, p(0)dt = c dt. QED
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This has some implications:

The deterministic equation
dX

dt
= −cX for S → ∅ makes no sense physically unless

there is an underlying stochastic dynamics for the S molecules.

And not just any stochastic dynamics, but a stochastic dynamics of a very particular
kind: Each S molecules must disappear in the next dt with probability c · dt.

If the S molecules don’t behave in that way, then the equation
dX

dt
= −cX will not

correctly describe the reaction S → ∅.
No fundamental physical theory of chemical kinetics can be premised on a

traditional ODE like
dX

dt
= −cX . Such an ODE can be, at best, a consequence of a

more fundamental theory, and perhaps only an approximate consequence.
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A tractable discrete-stochastic mathematical description of chemically reacting systems is
possible if successive reactive collisions between molecules tend to be separated in time
by very many non-reactive collisions.

In that case, the many non-reactive collisions tend to randomize

the velocities of the molecules (Maxwell-Boltzmann distribution),
the positions of the molecules (randomly uniform inside Ω ).

Then, instead of having to describe the systems state by giving the position, velocity
and species of every molecule in Ω , we can get away with specifying the much lower
dimensional vector function.

X (t) = (X1(t), ...,XN(t)),

provided its ith component,
Xi (t) the number of Si molecules in Ω at time t ,
is treated as a random variable.
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Each raction channel Rj can then be characterized by two entities:

Its propensity function aj(x): If the system is currently in state x ,

aj(x) · dt := probability that one Rj event will occur in the next dt.

The existence and form of aj(x) must come from molecular physics.

Its state change vector vj ≡ (v1j , ..., vNj):

vi,j = the change in Xi caused by one Rj event.

Rj induces the state change x → x + vj .

Examples:

S1 → S2: vj = (−1, 1, 0, ..., 0); aj (x)dt = (cjdt)x1 =⇒ aj (x) = cjx1

S1 + S2 → 2S2: same vj ; aj (x)dt = (cjdt)x1x2 =⇒ aj (x) = cjx1x2
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The Gillespie stochastic simulation algorithm (SSA)
A procedure for constructing sample paths or realizations of X (t):

Idea: Generate properly distributed random numbers for
the time τ to the next reaction
the index j of that reaction

p(τ, j |x , t) · dτ ≡ probability, given X (t) = x , that the next reaction will occur in
[t + τ, t + τ + dτ), and will be Rj .

M∑
k=1

ak(x) ≡ a0(x)

p(τ, j |x , t)dτ =
(

1− a0(x)
τ

n

)n
aj(x)dτ → e−a0(x)τaj(x)dτ

Therefore, p(τ, j |x , t)dτ = e−a0(x)τaj(x)dτ = a0(x)e−a0(x)τ · aj(x)

a0(x)
dτ

=⇒
τ is the exponenital r.v. with mean 1

a0(x)
.

j is the integer r.v. with probability mass
aj (x)

a0(x)
.

τ and j are statistically independent.
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The Gillespie stochastic simulation algorithm (SSA)

The following scheme is a Method of implementing the SSA

1 In state x at time t, evaluate a1(x), ..., aM(x) and a0(x) =
M∑
k=1

ak(x).

2 generate r1 and r2 random numbers in [0, 1], and compute τ and j according to

τ =
1

a0(x)
ln

(
1

1− r1

)
,

j = the smallest integer satisfying

j∑
k=1

ak (x) > r2a0(x).

3 t = t + τ and x = x + vj

4 Record (x , t). Go to 1 or end the simulation.
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Examples

This kind of models can be used in a lot of situations:

Chemistry, modelling chemical reactions.

Ecology, for instance in prey predator systems:

Wolfs and rabbits.
Bougainvillea (Brazilian plant) and Lepidoptera (bug).

Biological and medical problems:

Mutant invasions.
Populations of cells and virus.
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HIV-1

An HIV-1 infected person without any treatment has between 105 and 106 copies of
virus per milliliter of blood.

Following initiation of highly active antiretroviral therapy (HAART) the plasma viral
load declines fast. After several months of treatment, most patients attain a level of
plasma HIV-1 RNA below the detection limit (50 copies/mL).

This does not imply that viral replication has been completely suppressed by therapy.

Even in patients with “undetectable” plasma viral loads for many years, a low level
of virus can be detected in plasma by supersensitive assays.

An explanation is that HIV-1 establishes a state of latent infection in resting
memory CD4+ T cells, and virus is released when these cells encounter their relevant
antigens and are activated.

Observation of transient episodes of viremia (“blips”) above the detection limit.
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Summary

Rong L, Perelson AS (2009) Modeling HIV persistence, the latent reservoir, and Viral Blips in HIV-infected Patients on Potent Therapy. J Theor Biol 260:

308-31
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Experimental results

Figure: Experimental results from Nettles et. al

Nettles TE, Kieffer TL, Kwon P, Monie D, Han Y, et al. (2005) Intermittent HIV-1 viremia (Blips) and drug resistance in patients receiving HAART.

JAMA 293: 817-829.
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Mathematical Model

Rong L, Perelson AS (2009) Modeling HIV persistence, the latent reservoir, and Viral Blips in HIV-infected Patients on Potent Therapy. J Theor Biol 260:

308-31
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Simulations

Figure: Gillespie Simulations of our system.
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Simulations

Figure: Gillespie Simulations of our system.
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THANK YOU

FOR YOUR ATTENTION!!
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