Stochastic modelling in Mathematical Biology

Daniel Sánchez-Taltavull

Centre de Recerca Matemàtica

March 4th 2013

Seminari Informal de Matemàtiques de Barcelona

D. Sánchez-Taltavull (CRM)

Outline

Introduction

Master Equation and Monte Carlo methods

Kinetic Chemical Reactions and the Gillespie Stochastic Simulation Algorithm

Examples

D. Sánchez-Taltavull (CRM)

Outline

Introduction

Master Equation and Monte Carlo methods

Kinetic Chemical Reactions and the Gillespie Stochastic Simulation Algorithm

Examples

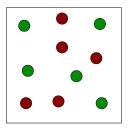
D. Sánchez-Taltavull (CRM)

Motivation

- There exists the general idea that randomness and noise simply add an unsystematic perturbation to a well-defined average behaviour.
- I will present several examples of systems in which noise contributes to the behaviour of the system in a non-trivial manner and it is fundamental to understanding the system.
- From these examples I will extract rules of thumb for ascertaining when randomness plays a fundamental roles.
- I will show you how to modelize some natural process in a better way than using a continuous and deterministic approach.

The Moran Process

The Moran process, named after the australian statistician Pat Moran, is a widely-used variant of the Wright-Fisher model and is commonly used in population genetics.



- N individuals of two types. N is keep fixed.
- n: number of normal individuals. m: number of mutant individuals. N=m+n.
- At each time step:
 - $n \to n+1$ and $m \to m-1$ with probability rate $W_+(n) = \frac{n}{N} \left(1 \frac{n}{N}\right)$.
 - $n \to n-1$ and $m \to m+1$ with probability rate $W_{-}(n) = \frac{n}{N} \left(1 \frac{n}{N}\right)$.

The Moran Process

- Note that W(n+1) = W(n-1), i.e. $\mathbb{E}[\Delta n] = \mathbb{E}[n(t+\Delta t) n(t)] = 0$.
- This implies that with $m = \mathbb{E}[n]$:

$$\frac{dm}{dt} = 0 \tag{1}$$

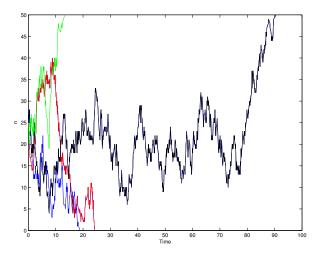
- The system has two absorving states: $W_+(n=0) = W_-(n=0) = 0$ and $W_+(n=N) = W_-(n=N) = 0$
- This means that

$$\lim_{t \to \infty} P(n(t) = 0 \quad \cup \quad n(t) = N) = 1$$
(2)

• This behaviour is not at all captured by the deterministic equation, which predicts that the population will stay constant.

The Moran Process

Simulation results:



Logistic growth

• The logistic equation,

$$\frac{dm}{dt} = m\left(1 - \frac{m}{K}\right),\tag{3}$$

has two steady states: m = 0 unstable and m = K stable, i.e. regardless of the value of K and for any initial condition such that m(t = 0) > 0, m(t) will asymptotically approach K.

- Consider now a continuous-time Markov process *n_t* whose dynamics are given by the following transition rate:
 - $n \rightarrow n+1$ with probability rate n.
 - $n \to n-1$ with probability rate $\frac{n(n-1)}{2} \frac{1}{K}$.
- This stochastic process has a unique absorbing state: n = 0, and therefore we expect the stochastic dynamics to show strong discrepancies with Equation (3) when randomness is dominant.

Logistic growth

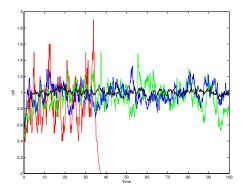


Figure: Red line K = 10, green K = 50, blue K = 100, black K = 1000

We observe that for small K fluctuations dominate the behaviour of the system. Extinctions are common for small K , in contradiction to the behaviour predicted by the logistic equation Eq. (3), and become rarer as K is allowed to increase.

D. Sánchez-Taltavull (CRM)

Steady states vs Absorbing states

- The definition of equilibrium states in stochastic systems is a bit technical and there are several definitions of equilibrium.
- Consider again the stochastic logistic growth, i.e. a process n_t such that:
 - $n \rightarrow n+1$ with probability rate $W_+(n) = n$
 - $n \to n-1$ with probability rate $W_{-}(n) = \frac{n(n-1)}{2} \frac{1}{K}$
- Consider a state of system, n_s , is, roughly speaking, a state of the process such that $W_+(n_s) = W_-(n_s)$.
 - $W_+(n_s)$ is the number of births within a population of n_s individuals
 - Likewise, $W_{-}(n_{s}) =$ the number of deaths within a population n_{s} individuals
 - So an steady state of our population dynamics is reached when $n_t = n_s$, since death rate is balanced by birth rate and therefore the population stays roughly constant
- $n_s = K$ which coincides with the deterministic stable fixed point.
- Note that $W_+(n) W_-(n) > 0$ if $n < n_s$ and $W_+(n) W_-(n) < 0$ if $n > n_s$

Steady stats vs Absorbing states

- An absorbing state, n_0 , is characterised by $W_i(n_0) = 0$ i.e. once the system has reached the absorbing state, it cannot leave anymore.
- Consider again, the stochastic logistic growth rate, we have:
 - Steady states are in general not absorbing states.
 - $W_+(n_s) \neq 0$ and $W_+(n_s) \neq 0$.
 - If n = 0 then $W_+(0) = W_-(0) = 0$ therefore n = 0 is an absorbing state.
- n_s belongs to the set of accessible states of n = 0, that means there is at least one consecutive set of transition that connects n_s and n₀. For Example:
 K → K − 1 → K − 2 → ··· → 1 → 0.
- $\bullet\,$ However, if ${\cal K}\gg 1$ the probability of such a chain of events is vanishingly small.

Summary

- n_s is an steady state in the sense that births and deaths are balanced. Moreover, $W_+(n) - W_-(n) > 0$ if $n < n_s$ and $W_+(n) - W_-(n) < 0$ if $n > n_s$. This is essentially equivalent to what happens in the deterministic logistic growth model.
- However, n_s is not an absorbing state of the stochastic dynamics. The only absorbing state is n = 0.
- Stochastic extinctions are relatively rare provided *K* is big. If this is the case, the deterministic system provides a reasonable approximation to the behaviour of the model.
- If, on the contrary, K is small stochastic extinctions are relatively common and the deterministic description is not an accurate one
- We have seen several examples of stochastic systems in which noise and randomness are the dominating factors. Their behaviours are not captured by their deterministic conterparts.
- In general, we should expect non-trivial random effects for small populations or dynamics with absorbing states.

Outline

Introduction

Master Equation and Monte Carlo methods

Kinetic Chemical Reactions and the Gillespie Stochastic Simulation Algorithm

Examples

D. Sánchez-Taltavull (CRM)

The Master Equation

- The Master Equation is our fundamental mathematical description of an stochastic process and the starting point for any attempt to analyse a particular model.
- It is obtained as a probability balance for all the events that can occur during the time intertal $(t, t + \Delta t)$.
- Mathematically, it is a set of ordinary differential equations for the probability distribution P(n, t) i.e. the probability that the number of individuals in the population at time t to be n.

The Master Equation II

Example: Birth and death process

- Birth n → n + 1 with probability rate W₊(n) = λn. Death: n → n − 1 with probability rate W₋(n) = σn.
- Probability balance:
 - $P(n, t + \Delta t) = \lambda(n-1)\Delta tP(n-1, t) + \sigma(n+1)\Delta tP(n+1, t) + (1 (\lambda n\Delta t + \sigma n\Delta t))P(n, t).$

• When
$$\Delta t \rightarrow 0$$
:

$$\frac{dP(n,t)}{dt} = \lambda(n-1)P(n-1,t) + \sigma(n+1)P(n+1,t) - (\lambda n + \sigma n)P(n,t)$$

• **Big Problem:** In general is not possible to get the analytical solution of the Master Equation, even a numerical solution of the Master Equation can be very hard.

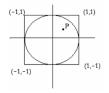
D. Sánchez-Taltavull (CRM)

Monte Carlo Simulations

- The first thoughts and attempts made to practice the Monte Carlo Method were suggested by a question which occurred in 1946 to Stanislaw Ulam was convalescing from an illness and playing solitaires. The question was what are the chances that a Canfield solitaire laid out with 52 cards will come out successfully?
- After spending a lot of time trying to estimate them by pure combinatorial calculations, he wondered whether a more practical method than "abstract thinking" might not be to lay it out say one hundred times and simply observe and count the number of successful plays.
- In 1950s Stanislaw Ulam and John von Neumann started a research in this topic founded by The RAND Corporation and the U.S. Air Force.
- Uses of Monte Carlo methods require large amounts of random numbers, and it was their use that spurred the development of pseudorandom number generators.

Monte Carlo Simulations

- There is no consensus on how Monte Carlo method should be defined.
- Example: Approximate the value of π
 - Consider a random point P in the unit square, which is the probability that P is in the unit circle?



- The probability has to be the quotinet of the areas, that is $\frac{\pi}{4}$.
 - a Set Ok = 0
 - b Generate two random numbers $x, y \in [-1, 1]$ if $x^2 + y^2 < 1$, then Ok = Ok + 1 c Repeat it N times. When $N \to \infty$, then $\frac{Ok}{N} \to \frac{\pi}{4}$

Outline

Introduction

Master Equation and Monte Carlo methods

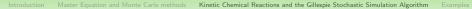
Kinetic Chemical Reactions and the Gillespie Stochastic Simulation Algorithm

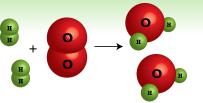
Examples

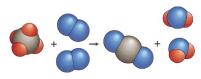
D. Sánchez-Taltavull (CRM)

A Chemical Reacting System

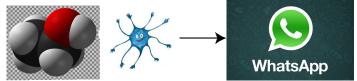
- Molecules of N chemical species $S_1, ..., S_N$
 - Inside some volume $\Omega,$ at some temperature ${\mathcal T}.$
- Interacting through M elemental reaction channels $R_1, ..., R_M$.
- *R_j* is assumed to describe a single instantaneous physical event which changes the population of at least one species.







 $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$



D. Sánchez-Taltavull (CRM)

Deterministic vs Stochastic

The time-evolution of chemical systems has traditionally been analyzed using continuous, deterministic mathematics (ODEs, PDEs).

But in fact, chemical systems evolve

- Discretely, because molecules come in integer numbers
- Stochastically, for several reasons:
 - Even if all the molecules moved according to deterministic Newtonian mechanics, the system is so sensitive to initial conditions that is behaviour will be random.
 - Chemical systems of practical interest are NEVER isolated. The reason why a system is a temperature T is because it is having random exchanges of energy with its environment.
 - All unimolecular reactions $S \rightarrow$ anything are inherently stochastic.

Deterministic vs Stochastic

For the simplest chemical reaction: $S
ightarrow \emptyset$

• Traditional wisdom asserts that $X(t) \equiv$ the number of S molecules in the system at time t, evolves according to the ODE

$$\frac{dX(t)}{dt} = -cX(t). \tag{4}$$

- But **physics** \implies the S molecules react independently of each other.
- The problem: There is no plausible physical mechanism that could give rise to such exquisitely coordinated deterministic behavior!
- The most reasonable mechanism for $S \to \emptyset$ is that the lifetimes of the individual S molecules are i.i.d. random variables. In that case (4) might describe how the average S population evolves in time:

$$\frac{dX_{avg}(t)}{dt} = -cX_{avg}(t).$$
(5)

• If the average S population evolves according to (5), then the lifetime of each S molecule must be an exponential random variable with mean $\frac{1}{c}$, or equivalently,

 $c \cdot dt = \text{Prob}\{\text{a given } S - \text{molecule will die in the next } dt\}$

D. Sánchez-Taltavull (CRM)

Proof of this result:

• With x₀ molecules at time 0, the ODE (5) implies

$$X_{avg}(t) = x_0 e^{-ct} \quad (t > 0)$$

- Let f(τ) denote the cdf of the molecule lifetime. Then for any t > 0, (1 − f(t)) = the probability that any particular one of the x₀ molecules at time 0 will stil be alive at time t.
- So the probability that exactly x moelcules will be alive at this t time is:

$$(1-f(t))^{x}(f(t))^{x_{0}-x}\frac{x_{0}!}{x!(x_{0}-x)!}$$

- From these expressions we obtain $f(t) = 1 e^{-ct}$. This is the cdf of the exponential random variable with mean $\frac{1}{c}$.
- The corresponding pdf $p(t) \equiv df(t)/dt = ce^{-ct}$ is such that $p(t)dt = \text{Prob}\{$ the molecule will die in $[t, t + dt)\}$. Thus, p(0)dt = c dt. **QED**

This has some implications:

- The deterministic equation $\frac{dX}{dt} = -cX$ for $S \to \emptyset$ makes no sense physically unless there is an underlying stochastic dynamics for the *S* molecules.
- And not just any stochastic dynamics, but a stochastic dynamics of a very particular kind: Each *S* molecules must disappear in the next *dt* with probability *c* · *dt*.
- If the S molecules don't behave in that way, then the equation $\frac{dX}{dt} = -cX$ will not correctly describe the reaction $S \to \emptyset$.
- No fundamental physical theory of chemical kinetics can be premised on a traditional ODE like $\frac{dX}{dt} = -cX$. Such an ODE can be, at best, a consequence of a more fundamental theory, and perhaps only an approximate consequence.

D. Sánchez-Taltavull (CRM)

A tractable discrete-stochastic mathematical description of chemically reacting systems is possible if successive reactive collisions between molecules tend to be separated in time by very many non-reactive collisions.

- In that case, the many non-reactive collisions tend to randomize
 - the velocities of the molecules (Maxwell-Boltzmann distribution),
 - the positions of the molecules (randomly uniform inside $\boldsymbol{\Omega}$).
- Then, instead of having to describe the systems state by giving the position, velocity and species of every molecule in Ω , we can get away with specifying the much lower dimensional vector function.

$$X(t) = (X_1(t), ..., X_N(t)),$$

provided its ith component, $X_i(t)$ the number of S_i molecules in Ω at time t, is treated as a random variable. Each raction channel R_j can then be characterized by **two entities**:

• Its **propensity function** $a_j(x)$: If the system is currently in state x,

 $a_j(x) \cdot dt :=$ probability that one R_j event will occur in the next dt.

The existence and form of $a_j(x)$ must come from molecular physics.

• Its state change vector $v_j \equiv (v_{1j}, ..., v_{Nj})$:

 $v_{i,i}$ = the change in X_i caused by one R_i event.

 R_j induces the state change $x \rightarrow x + v_j$.

- Examples:
 - $S_1 \rightarrow S_2$: $v_j = (-1, 1, 0, ..., 0)$; $a_j(x)dt = (c_jdt)x_1 \implies a_j(x) = c_jx_1$
 - $S_1 + S_2 \rightarrow 2S_2$: same v_j ; $a_j(x)dt = (c_jdt)x_1x_2 \implies a_j(x) = c_jx_1x_2$

The Gillespie stochastic simulation algorithm (SSA)

A procedure for constructing sample paths or realizations of X(t):

- Idea: Generate properly distributed random numbers for
 - the time τ to the next reaction
 - the index *j* of that reaction
- $p(\tau, j|x, t) \cdot d\tau \equiv$ probability, given X(t) = x, that the next reaction will occur in $[t + \tau, t + \tau + d\tau)$, and will be R_i .

$$\sum_{k=1}^{M} a_k(x) \equiv a_0(x)$$
$$p(\tau, j|x, t)d\tau = \left(1 - a_0(x)\frac{\tau}{n}\right)^n a_j(x)d\tau \to e^{-a_0(x)\tau}a_j(x)d\tau$$

• Therefore, $p(\tau, j|x, t)d\tau = e^{-a_0(x)\tau}a_j(x)d\tau = a_0(x)e^{-a_0(x)\tau} \cdot \frac{a_j(x)}{a_0(x)}d\tau$

- τ is the exponenital r.v. with mean $\frac{1}{a_0(x)}$.
- j is the integer r.v. with probability mass $\frac{a_j(x)}{a_0(x)}$.
- τ and *i* are statistically independent.

The Gillespie stochastic simulation algorithm (SSA)

The following scheme is a Method of implementing the SSA

- 1 In state x at time t, evaluate $a_1(x), ..., a_M(x)$ and $a_0(x) = \sum_{k=1}^M a_k(x)$.
- 2 generate r_1 and r_2 random numbers in [0, 1], and compute τ and j according to

•
$$\tau = \frac{1}{a_0(x)} ln\left(\frac{1}{1-r_1}\right)$$
,
• $j =$ the smallest integer satisfying $\sum_{k=1}^{j} a_k(x) > r_2 a_0(x)$.

- 3 $t = t + \tau$ and $x = x + v_j$
- 4 Record (x, t). Go to 1 or end the simulation.

Outline

Introduction

Master Equation and Monte Carlo methods

Kinetic Chemical Reactions and the Gillespie Stochastic Simulation Algorithm

Examples

D. Sánchez-Taltavull (CRM)

Examples

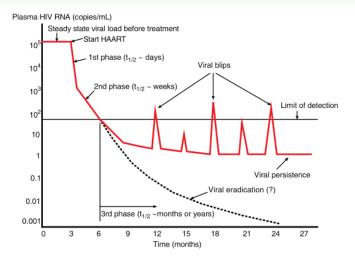
This kind of models can be used in a lot of situations:

- Chemistry, modelling chemical reactions.
- Ecology, for instance in prey predator systems:
 - Wolfs and rabbits.
 - Bougainvillea (Brazilian plant) and Lepidoptera (bug).
- Biological and medical problems:
 - Mutant invasions.
 - Populations of cells and virus.

HIV-1

- An HIV-1 infected person without any treatment has between 10^5 and 10^6 copies of virus per milliliter of blood.
- Following initiation of highly active antiretroviral therapy (HAART) the plasma viral load declines fast. After several months of treatment, most patients attain a level of plasma HIV-1 RNA below the detection limit (50 copies/mL).
- This does not imply that viral replication has been completely suppressed by therapy.
- Even in patients with "undetectable" plasma viral loads for many years, a low level of virus can be detected in plasma by supersensitive assays.
- An explanation is that HIV-1 establishes a state of latent infection in resting memory CD4⁺ T cells, and virus is released when these cells encounter their relevant antigens and are activated.
- Observation of transient episodes of viremia ("blips") above the detection limit.

Summary



Rong L, Perelson AS (2009) Modeling HIV persistence, the latent reservoir, and Viral Blips in HIV-infected Patients on Potent Therapy. J Theor Biol 260: 308-31

D. Sánchez-Taltavull (CRM)

Experimental results

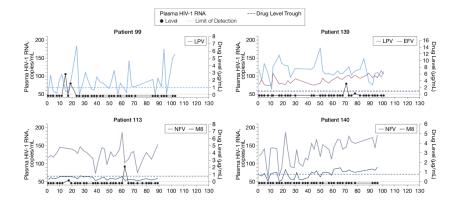
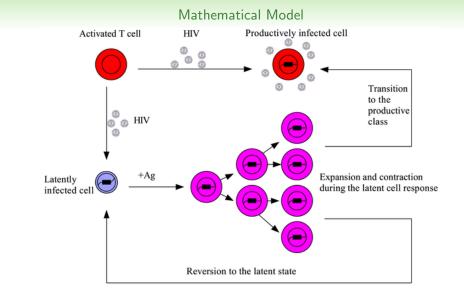


Figure: Experimental results from Nettles et. al

Nettles TE, Kieffer TL, Kwon P, Monie D, Han Y, et al. (2005) Intermittent HIV-1 viremia (Blips) and drug resistance in patients receiving HAART. JAMA 293: 817-829.



Rong L, Perelson AS (2009) Modeling HIV persistence, the latent reservoir, and Viral Blips in HIV-infected Patients on Potent Therapy. J Theor Biol 260: 308-31

Simulations

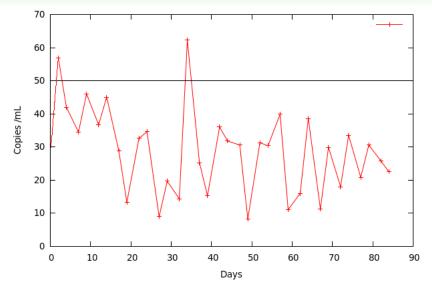


Figure: Gillespie Simulations of our system.

D. Sánchez-Taltavull (CRM)

Simulations

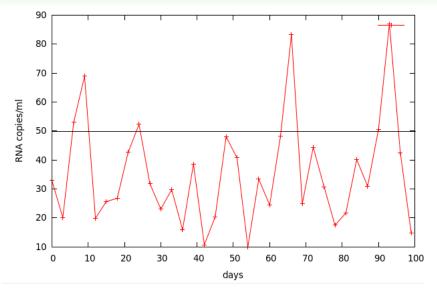


Figure: Gillespie Simulations of our system.

D. Sánchez-Taltavull (CRM)

THANK YOU

FOR YOUR ATTENTION !!

D. Sánchez-Taltavull (CRM)