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Recall: Floquet theory I

Floquet theory named after Gaston Floquet (S.XIX). Concerns
about linear equations with periodic coefficients.

ẋ = A(t)x , x ∈ Rn, A(t + T ) = A(t).

Where A depends continuously on time. Denote it by T -LSPC.
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Recall: Floquet theory II

Floquet theorem

States that every T -LSPC can be reduced to a linear system
with constant coefficients.

It is done by means of a T -periodic change of variables which
may be complex.

There always exists a 2T -periodic real change of variables
reducing the system.
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Two dimensional quasi-periodic linear skew-products

A discrete system {
x̄ = A(θ)x ,

θ̄ = θ + ω,

where x ∈ R2; θ ∈ T; A ∈ C 0(T,GL2 R) and ω /∈ 2πQ/[0, 2π], is
called a q.p linear skew product (QPLSP).

Importance: Discrete systems has they own interest and,
moreover, can be used to study the q.p linear differential equations.
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Reducibility of QPLSP

Definition

A QPLSP is said to be reducible if there exists a continuous change
of variables x = C (θ)y such that transforms the former system to:{

ȳ = By

θ̄ = θ + ω

Where B = C−1(θ + ω)A(θ)C (θ) does not depend on θ.
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Winding number of a matrix

Definition

Let θ ∈ T, A ∈ C 0(T,GL2 R). Fix a vector v ∈ R2; v 6= 0, and
consider the planar curve vA(θ) = A(θ)v , which does not pass
through the origin. We define the winding number of the matrix
A(θ) as the winding number of vA(θ) around the origin.

Lemma

The winding number of a matrix, defined as above, does not
depend on the choice of the vector v .
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The winding number of a product

Theorem

Let A,B ∈ C 0(T,GL2 R), then

wind(A(θ)B(θ)) = wind(A(θ)) + wind(B(θ)).

Where wind stands for the winding number.

Corollary

The winding number of a matrix A(θ) is invariant under changes of
the type C−1(θ + ω)A(θ)C (θ).
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Detecting non-reducibility

Criterion

Given a planar QPLSP {
x̄ = A(θ)x

θ̄ = θ + ω

If wind(A(θ)) 6= 0, the system cannot be reducible.
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Examples

The rotation matrices

R`(θ) =

(
cos `θ − sin `θ
sin `θ cos `θ

)
.

have wind R`(θ) = ` and hence they cannot be reducible.

Remark

The winding number of a Poincaré map associated to a planar
quasi-periodic linear differential equation is zero.
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Reducibility and dynamics

Question

Does reducibility manifests in dynamics?

Question

How we can see its impact?
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Consider the following affine system.{
x̄ = µA(θ)x + b(θ)

θ̄ = θ + ω,

Where θ ∈ T, µ > 0 is a parameter, b(θ) ∈ C 0(T,R2) =: E and
A ∈ C 0(T,GL2 R). Henceforth we shall write ‖A‖, meaning the
norm of the matrix A as a linear operator of E .

Question

Do AF have invariant curves?
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Existence and uniqueness of invariant curves

Theorem

For each µ, the AS introduced before has exactly one invariant
curve x∗ whenever µ /∈ [‖A‖−1, ‖A−1‖]. Set kT = µ‖A‖ and
kP = µ−1‖A−1‖.

If µ < ‖A‖−1 then x∗ is AS and ‖x∗‖ < 1
1−kT ‖b‖.

If µ > ‖A−1‖ then x∗ is AU ans ‖x∗‖ < kP
1−kP ‖b‖.

Remark

Proof: Apply the Fixed Point Theorem for Banach spaces.
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Exploring concrete cases

We study the following AS in C.{
z̄ = µe iθz + 1,

θ̄ = θ + ω.

We already know there is an invariant curve if µ 6= 1. Notice that
Λ(x0) = Λ = lnµ. There is no invariant curve for µ = 1. In the
reducible case, the invariant curve collapses to a point:

x∗ =
1

1− µα
,

where α is the coefficient of the reduced system.
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Explicit invariant curves

Theorem

The solutions of the invariant curve equation are given by:

z(θ) =
∞∑
k=0

µke−i
k(k+1)

2
ωe ikθ, µ < 1

and

z(θ) = −
−∞∑
k=0

µke−i
k(k+1)

2
ωe ikθ, µ > 1

From now on, we will work only on the case µ < 1.
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Numerical Experiments

Figure: Fittings of the winding number and the infinity norm.
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Numerical Experiments II

Figure: Attractors for µ = 0.5 and µ = 0.9.
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Numerical Experiments III

Figure: Attractors for µ = 0.99 and µ = 0.999.
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On the infinity norm

Name:

zµ(θ) =
∞∑
k=0

µkCω
k e ikθ, Cω

k = e−i
k(k+1)

2
ω.

Fact

The growth of the infinity norm:

1√
1− µ

≤ ‖zµ‖∞ ≤
1

1− µ
.

If the sequence {Cω
k }k∈Z is equidistributed on the circle, then:

‖zµ‖∞ ∼
1√

1− µ
.
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On the winding number

Fact

If {Cω
k }k∈Z is equidistributed on the circle, the winding number of

zµ gets arbitrarily large when µ gets close to 1.

Remark

To prove the last fact is equivalent to prove that the function

f (ρ) =
∞∑
k=0

Cω
k ρ

k

has infinitely many zeros in the disk of radius 1.
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WOW

Figure: WOW, such SIMBa.
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