On non-reducible quasi-periodic linear skew-products

Ángel Jorba and Marc Jorba

March 17, 2014

Seminari Informal de Matemàtiques de Barcelona

Ángel Jorba and Marc Jorba On non-reducible quasi-periodic linear skew-products

2 Reducibility of two dimensional QPLSP

3 Affine Systems

Recall: Floquet theory I

Floquet theory named after Gaston Floquet (S.XIX). Concerns about linear equations with periodic coefficients.

$$\dot{x} = A(t)x, \quad x \in \mathbb{R}^n, \quad A(t+T) = A(t).$$

Where A depends continuously on time. Denote it by T-LSPC.

Recall: Floquet theory II

Floquet theorem

- States that every *T*-LSPC can be reduced to a linear system with constant coefficients.
- It is done by means of a *T*-periodic change of variables which may be complex.
- There always exists a 2*T*-periodic real change of variables reducing the system.

Two dimensional quasi-periodic linear skew-products

A discrete system

$$\begin{cases} \bar{x} = A(\theta)x, \\ \bar{\theta} = \theta + \omega, \end{cases}$$

where $x \in \mathbb{R}^2$; $\theta \in \mathbb{T}$; $A \in C^0(\mathbb{T}, \operatorname{GL}_2 \mathbb{R})$ and $\omega \notin 2\pi \mathbb{Q}/[0, 2\pi]$, is called a q.p linear skew product (QPLSP).

Importance: Discrete systems has they own interest and, moreover, can be used to study the q.p linear differential equations.

Reducibility of QPLSP

Definition

A QPLSP is said to be reducible if there exists a continuous change of variables $x = C(\theta)y$ such that transforms the former system to:

$$\begin{cases} \bar{y} = By\\ \bar{\theta} = \theta + \omega \end{cases}$$

Where $B = C^{-1}(\theta + \omega)A(\theta)C(\theta)$ does not depend on θ .

Winding number of a matrix

Definition

Let $\theta \in \mathbb{T}$, $A \in C^0(\mathbb{T}, \operatorname{GL}_2 \mathbb{R})$. Fix a vector $v \in \mathbb{R}^2$; $v \neq 0$, and consider the planar curve $v_A(\theta) = A(\theta)v$, which does not pass through the origin. We define the winding number of the matrix $A(\theta)$ as the winding number of $v_A(\theta)$ around the origin.

Lemma

The winding number of a matrix, defined as above, does not depend on the choice of the vector v.

The winding number of a product

Theorem

Let $A, B \in C^0(\mathbb{T}, \operatorname{GL}_2 \mathbb{R})$, then

```
wind(A(\theta)B(\theta)) = wind(A(\theta)) + wind(B(\theta)).
```

Where wind stands for the winding number.

Corollary

The winding number of a matrix $A(\theta)$ is invariant under changes of the type $C^{-1}(\theta + \omega)A(\theta)C(\theta)$.

Detecting non-reducibility

Criterion

Given a planar QPLSP

$$\begin{cases} \bar{x} = A(\theta)x\\ \bar{\theta} = \theta + \omega \end{cases}$$

If wind($A(\theta)$) \neq 0, the system cannot be reducible.

Examples

The rotation matrices

$${\sf R}_\ell(heta) = egin{pmatrix} \cos \ell heta & -\sin \ell heta\ \sin \ell heta & \cos \ell heta \end{pmatrix}.$$

have wind $R_{\ell}(\theta) = \ell$ and hence they cannot be reducible.

Remark

The winding number of a Poincaré map associated to a planar quasi-periodic linear differential equation is zero.

Reducibility and dynamics

Question

Does reducibility manifests in dynamics?

Question

How we can see its impact?

Affine Systems

Consider the following affine system.

$$\begin{cases} \bar{\mathbf{x}} = \mu \mathbf{A}(\theta) \mathbf{x} + \mathbf{b}(\theta) \\ \bar{\theta} = \theta + \omega, \end{cases}$$

Where $\theta \in \mathbb{T}$, $\mu > 0$ is a parameter, $b(\theta) \in C^0(\mathbb{T}, \mathbb{R}^2) =: E$ and $A \in C^0(\mathbb{T}, \operatorname{GL}_2 \mathbb{R})$. Henceforth we shall write ||A||, meaning the norm of the matrix A as a linear operator of E.

Question

Do AF have invariant curves?

Existence and uniqueness of invariant curves

Theorem

For each μ , the AS introduced before has exactly one invariant curve x^* whenever $\mu \notin [\|A\|^{-1}, \|A^{-1}\|]$. Set $k_T = \mu \|A\|$ and $k_P = \mu^{-1} \|A^{-1}\|$. • If $\mu < \|A\|^{-1}$ then x^* is AS and $\|x^*\| < \frac{1}{1-k_T} \|b\|$. • If $\mu > \|A^{-1}\|$ then x^* is AU ans $\|x^*\| < \frac{k_P}{1-k_T} \|b\|$.

Remark

Proof: Apply the Fixed Point Theorem for Banach spaces.

Exploring concrete cases

We study the following AS in \mathbb{C} .

$$\begin{cases} \bar{z} = \mu e^{i\theta} z + 1, \\ \bar{\theta} = \theta + \omega. \end{cases}$$

We already know there is an invariant curve if $\mu \neq 1$. Notice that $\Lambda(x_0) = \Lambda = \ln \mu$. There is no invariant curve for $\mu = 1$. In the reducible case, the invariant curve collapses to a point:

$$x^* = \frac{1}{1 - \mu \alpha},$$

where α is the coefficient of the reduced system.

Explicit invariant curves

Theorem

The solutions of the invariant curve equation are given by:

$$z(heta) = \sum_{k=0}^\infty \mu^k e^{-irac{k(k+1)}{2}\omega} e^{ik heta}, \hspace{0.2cm} \mu < 1$$

and

$$z(heta) = -\sum_{k=0}^{-\infty} \mu^k e^{-irac{k(k+1)}{2}\omega} e^{ik heta}, \quad \mu > 1$$

From now on, we will work only on the case $\mu < 1$.

Numerical Experiments

Figure: Fittings of the winding number and the infinity norm.

Numerical Experiments II

Figure: Attractors for $\mu = 0.5$ and $\mu = 0.9$.

Numerical Experiments III

Figure: Attractors for $\mu = 0.99$ and $\mu = 0.999$.

On the infinity norm

Name:

$$z_{\mu}(heta) = \sum_{k=0}^{\infty} \mu^k C_k^{\omega} e^{ik heta}, \qquad C_k^{\omega} = e^{-irac{k(k+1)}{2}\omega}.$$

Fact

The growth of the infinity norm:

$$rac{1}{\sqrt{1-\mu}} \leq \|z_\mu\|_\infty \leq rac{1}{1-\mu}.$$

If the sequence $\{C_k^{\omega}\}_{k\in\mathbb{Z}}$ is equidistributed on the circle, then:

$$\|z_{\mu}\|_{\infty} \sim \frac{1}{\sqrt{1-\mu}}.$$

On the winding number

Fact

If $\{C_k^{\omega}\}_{k\in\mathbb{Z}}$ is equidistributed on the circle, the winding number of z_{μ} gets arbitrarily large when μ gets close to 1.

Remark

To prove the last fact is equivalent to prove that the function

$$f(\rho) = \sum_{k=0}^{\infty} C_k^{\omega} \rho^k$$

has infinitely many zeros in the disk of radius 1.

WOW

Figure: WOW, such SIMBa.

Ángel Jorba and Marc Jorba On non-reducible quasi-periodic linear skew-products