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What? Postquantum Cryptography
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Public-key cryptography

Imagine Alice and Bob want to communicate through a
channel, but they’ve never met before.

How can they agree on a secret key to encrypt their
communications, using e.g. AES?
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Diffie and Hellman (1976)

Use the group (Z/pZ)× = ⟨α⟩.

Alice chooses a private key 1 < a < p, and publishes A = αa

mod p.
Bob chooses a private key 1 < b < p, and publishes B = αb

mod p.
They may use the shared secret Ab ≡ Ba ≡ αab mod p.
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Computational problems

Problem (Discrete Logarithm - DLP)
Given a cyclic group G = ⟨α⟩ and an element β ∈ G, find
x ∈ Z such that β = αx.

Problem (Diffie-Hellman - DHP)
Given a cyclic group G = ⟨α⟩ and elements αa, αb ∈ G, find
αab.

5 / 35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Diffie-Hellman Why? Solving the DLP What? Postquantum Cryptography How? Isogenies and SIDH References

Computational problems

Problem (Discrete Logarithm - DLP)
Given a cyclic group G = ⟨α⟩ and an element β ∈ G, find
x ∈ Z such that β = αx.

Problem (Diffie-Hellman - DHP)
Given a cyclic group G = ⟨α⟩ and elements αa, αb ∈ G, find
αab.

5 / 35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Diffie-Hellman Why? Solving the DLP What? Postquantum Cryptography How? Isogenies and SIDH References

Introduction: Diffie-Hellman

Why? Solving the DLP

What? Postquantum Cryptography

How? Isogenies and SIDH

6 / 35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Diffie-Hellman Why? Solving the DLP What? Postquantum Cryptography How? Isogenies and SIDH References

Why? Solving the DLP

Let’s see some algorithms to solve for discrete logarithms!

Problem (Discrete Logarithm - DLP)
Given a cyclic group G = ⟨α⟩ and an element β ∈ G, find
x ∈ Z such that β = αx.

7 / 35
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Baby step – giant step

Let m >
√

N be an integer. Then for every x ≤ N,
x = am + b, with 0 ≤ a, b < m.

1. Compute and store αb, for 0 ≤ b < m.
2. Compute βα−am, for 0 ≤ a < m, and check for a match

βα−am = αb.
3. If so, β = αam+b and x = am + b.

8 / 35
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Pohlig-Hellman

Idea: factor N =
∏r

i=1 pei
i , and obtain x mod pei

i for each i.
Then use the Chinese Remainder Theorem to combine the
information.

If pe | N, then αN/pe has order pe, and βN/pe
=

(
αN/pe)x. We

can compute x mod pe!

*Only useful if N is smooth (all prime factors are small).

9 / 35
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Index calculus

It applies to finite fields: Z/pZ and Fpr .

1. Choose a factor base S. For each gi ∈ S we will
compute the integer yi for which gi = αyi .

2. Find a relation of the form αkβ =
∏t

i=1 gei
i .

3. The discrete logarithm will be

x = logα(β) =
t∑

i=1
ei logα(gi)− k =

t∑
i=1

eiyi − k.

10 / 35
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Index calculus

This algorithm has the best complexity: it is subexponential!

Ln[t, γ] = e(γ+o(1))(log n)t(log log n)1−t

If t = 0, then Ln[0, γ] = (log n)γ+o(1) is polynomial in log n.
If t = 1, then Ln[1, γ] = nγ+o(1) is exponential in log n.

11 / 35
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Summary of complexities

Algorithm Complexity
Exhaustive search O(N)

Baby step – giant step Time O(
√

N), memory O(
√

N)
Pohlig-Hellman O(

∑r
i=1 ei(logN +

√pi))

Index calculus in Fpn Lpn[1/2,
√
2]

NFS-DLP in Fpn Lpn[1/3, c]

Table: Algorithms solving DLP in a group of order N =
∏r

i=1 pei
i .

12 / 35
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Shor’s algorithm

In 1994, Peter Shor [Sho94] published a quantum algorithm
that would factor integers and solve discrete logarithms in
polynomial time...

... but don’t worry, because quantum computers are just
theoretical.

Right?
Right?

13 / 35
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Why Post-Quantum Cryptography, then?

PQCRYPTO EU-Project
“The EU and governments around the world are investing
heavily in building quantum computers; society needs to be
prepared for the consequences, including cryptanalytic attacks
accelerated by these computers.” [Lan15]

14 / 35
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Why Post-Quantum Cryptography, then?

NIST’s Report on Post-Quantum Cryptography
“Some experts even predict that within the next 20 or so years,
sufficiently large quantum computers will be built to break
essentially all public key schemes currently in use.” [Moo+16]
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Introduction: Diffie-Hellman

Why? Solving the DLP

What? Postquantum Cryptography

How? Isogenies and SIDH
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What is Postquantum Cryptography?

A postquantum cryptosystem must meet two requirements:

1. It must be efficient to use with existing hardware.
2. It must be resistent both to classical and quantum

adversaries.

16 / 35
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What is Postquantum Cryptography?

A postquantum cryptosystem must meet two requirements:
1. It must be efficient to use with existing hardware.

2. It must be resistent both to classical and quantum
adversaries.

16 / 35
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What do we need to develop?

We can’t use ciphers based on discrete logarithms
(Diffie-Hellman) or integer factorization (RSA). That is, we
need to look for new kinds of asymmetric encryption.

However, ”symmetric algorithms [...] should be usable in a
quantum era”, because breaking them usually involves
brute-force search in the key space, and ”doubling the key size
will be sufficient to preserve security” [Moo+16].

17 / 35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Diffie-Hellman Why? Solving the DLP What? Postquantum Cryptography How? Isogenies and SIDH References

What do we need to develop?

We can’t use ciphers based on discrete logarithms
(Diffie-Hellman) or integer factorization (RSA). That is, we
need to look for new kinds of asymmetric encryption.

However, ”symmetric algorithms [...] should be usable in a
quantum era”, because breaking them usually involves
brute-force search in the key space, and ”doubling the key size
will be sufficient to preserve security” [Moo+16].

17 / 35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Diffie-Hellman Why? Solving the DLP What? Postquantum Cryptography How? Isogenies and SIDH References

What techniques are involved in PQ Cryptography?

• Lattice-based cryptography
• Code-based cryptography
• Isogeny-based cryptography

18 / 35
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Introduction: Diffie-Hellman

Why? Solving the DLP

What? Postquantum Cryptography

How? Isogenies and SIDH
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Elliptic curves
Let K be a field of characteristic different from 2, 3, and
A,B ∈ K ⊆ L with 4A3 + 27B2 ̸= 0. An elliptic curve E is
the set of points (x, y) that satisfy the equation

E : y2 = x3 + Ax + B.

More precisely, we define the set of L-rational points,

E(L) := {(x, y) ∈ L × L | y2 = x3 + Ax + B} ∪ {O}.

In homogeneous coordinates, the equation is
y2z = x3 + Axz2 + Bz3, and O = (0 : 1 : 0) is the only point
at infinity.

20 / 35
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Elliptic curves are groups
Given two points P,Q ∈ E(K), we define an operation on the
points:

Theorem
The set E(K) with the operation + is an abelian group.
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The j-invariant

Given a curve E : y2 = x3 + Ax + B, its j-invariant is

j(E) = 1728 4A3

4A3 + 27B2 .

Two curves are isomorphic over K̄ if and only if they have the
same j-invariant.
For each j0 ∈ K̄, there exists a curve E with j(E) = j0.
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Isogenies

Given two elliptic curves E1, E2 over K, an isogeny between
them is a non-constant map

ϕ : E1(K̄) → E2(K̄)

that is both a morphism of algebraic curves and a group
homomorphism.

Isogenies can be put in a standard form:

ϕ(x, y) =
(

p(x)
q(x) , y

s(x)
t(x)

)
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Multiplication by n

The multiplication-by-n map [n] : E → E is an isogeny for all
non-zero n ∈ Z. Its kernel is written as E[n], the group of
n-torsion points.

Let p = charK. For any prime ℓ ̸= p, we have
E[ℓn] ∼= Z/ℓnZ× Z/ℓnZ. This group has ℓn−1(ℓ+ 1) cyclic
subgroups of order ℓn.
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Quotient curve

Every isogeny ϕ : E1 → E2 has finite kernel, a subgroup
G ⊂ E1(K̄).

Theorem
Let E1 be an elliptic curve over K, and let G be a finite
subgroup of E1(K̄). There exist a curve E2 and an isogeny
ϕ : E1 → E2, such that ker ϕ = G. Moreover, ϕ and E2 are
unique up to isomorphism.

We will write E2 = E1/G.
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Hasse’s theorem

Theorem
Let E be an elliptic curve defined over a finite field Fq, q = pr.
The number of Fq-rational points of E is

#E(Fq) = q + 1− t,

with |t| ≤ 2√q.

26 / 35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction: Diffie-Hellman Why? Solving the DLP What? Postquantum Cryptography How? Isogenies and SIDH References

Supersingular curves

Theorem
Let E be a curve over a finite field Fq, q = pr. TFAE:

• E is supersingular.
• E[p] = {O}.
• [p] is purely inseparable.
• #E(Fq) = q + 1− t, with t ≡ 0 mod p.
• End(E)⊗Z Q is a quaternion algebra.

Given a prime p, there are about p/12 supersingular elliptic
curve isomorphism classes defined over F̄p.
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Supersingular Isogeny Diffie Hellman - Setting

Let p = 2eA3eB − 1 be a prime with 2eA ≈ 3eB , set K = Fp2 .

The curve E0 : y2 = x3 + x is supersingular, and

#E0(Fp2) = (p + 1)2 = (2eA3eB)2.

We have E0[2eA] = ⟨PA,QA⟩, E0[3eB] = ⟨PB,QB⟩ ⊂ E0(Fp2).
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SIDH - Private keys

Alice chooses a pair (mA, nA) ∈ Z/2eAZ× Z/2eAZ (not both
divisible by 2). This is her private key.

Bob chooses a pair (mB, nB) ∈ Z/3eBZ× Z/3eBZ (not both
divisible by 3). This is his private key.
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SIDH - Key exchange

E0/⟨[mA]PA + [nA]QA⟩

E0

ϕA

8 8rrrrrrrrrrrrrrrrrrrrrrr

ϕB

&&LL
LLL

LLL
LLL

LLL
LLL

LLL
LLL

E0/⟨[mB]PB + [nB]QB⟩
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SIDH - Key exchange

EA
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SIDH - Key exchange
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SIDH - Key exchange

Figure: SIDH graph with p = 2533 − 1 = 863.
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Computational problems

Problem (Supersingular Isogeny problem (CSSI))
Let ϕA : E0 → EA be an isogeny with kernel
⟨[mA]PA + [nA]QA⟩, where mA, nA are chosen randomly in
Z/ℓeA

A Z and not both divisible by ℓA.
Given the curves E0, EA and the values ϕA(PB) and ϕA(QB),
find a generator RA of ⟨[mA]PA + [nA]QA⟩.

Analog to DLP in the Diffie-Hellman setting.
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Computational problems

Problem (Supersingular D.-H. problem (SSCDH))
Let {

ϕA : E0 → EA = E0/⟨[mA]PA + [nA]QA⟩,
ϕB : E0 → EB = E0/⟨[mB]PB + [nB]QB⟩

be isogenies defined as in the SIDH protocol.
Given the curves EA, EB and the points ϕA(PB), ϕA(QB),
ϕB(PA), ϕB(QA), find the j-invariant of the curve

E0/⟨[mA]PA + [nA]QA, [mB]PB + [nB]QB⟩.

Analog to DHP in the Diffie-Hellman setting.
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SIDH security

• The same problems in the ordinary case (e.g.,
non-supersingular) can be solved with a quantum
computer in subexponential time.

• The best strategy to break SIDH is almost brute-force, at
O( 4

√p) and O( 6
√p) (exponential in log p ∼ eA, eB).

• It looks like the auxiliary points (ϕA(PB) and so on) are
revealing too much information, but so far nobody* has
been able to exploit them.
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SIDH/SIKE in production

Figure: Comparison between lattice-based HRSS-SXY and
isogeny-based SIKE [Kwi19].
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SIDH/SIKE in production

Figure: Ostrich vs turkey [KV19].
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Conclusions

• Public-key cryptosystems based in RSA and
Diffie-Hellman could be broken in a few years.

• Current efforts in finding and testing new postquantum
standards.

• SIDH/SIKE is the most prominent isogeny-based
cryptography proposal, however there are other
constructions to explore (CGL, CSIDH, higher genus...).
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Thank you!
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