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How do we solve PDEs?

@ Find a space of functions where existence and uniqueness are
viable.
@ Prove that, in fact, the solutions are in more desirable spaces.

For example, a good space to have existence and uniqueness is L2
or H', and a good space to have finally the solutions could be C?
or C*.



Introduction: Weak Topology

Definition

Let E be a Banach space, and E’ the space of continuous linear
functionals from E to R. We say f, is weak convergent to f in E if,
for any ¢ € E', ¢(f,) — ¢(f). We note f, — f.

Example
E = L2(—m,m), fo(x) =sin(nx). Let ¢ € E'. ¢(fa) = |7 fag,

g € L?(—m, ), therefore g € L}(—n, 7). By the
Riemann-Lebesgue lemma, ¢(f,) — 0. Hence we say f, — 0.
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Introduction: Compact Operators

Definition
Let E, F be Banach spaces, a (linear) operator T : E — F is said
to be compact, if T(Bg) is a compact set in F.

SEE

@ Finite rank operators are compact.

@ Integral operators are usually compact.

Proposition

Let T : E — F be compact, and let f, — f in E. Then,
T(f,) — T(f) in the strong (norm) topology of F.
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Introduction: H(Q)

Definition
Let Q be a Lipschitz domain.

H' = {f : Q — R such that |f|,||Vf]| € L>(Q)}

e H(Q) is a Hilbert space, with the product
<f,g >:/ fg+VFf-Vg
Q

o Tr: HY(Q) — L2(09) is well defined, continuous and
compact, and for u € CY(Q), Tru = u|sq.
o i: HY(Q) — L2(Q), the inclusion, is compact.

Definition

Hi = {f € H'(Q) such that Tr(f) = 0}




Introduction: Maximum Principle

Theorem (Maximum principle in weak form)

—Au>0inQ
Let u € HY(Q) =TS Then, u>0in Q.
u >0 on 0f2.

We have to understand —Awu > 0 in the weak sense, this is,
integrating by parts and taking v € H}(Q),v >0,

/—Au'v:/Vu'VvZO
Q Q



Introduction: Maximum Principle

Proof

Set u=u" — u~, where uT,u= >0 and utu™ =0.
Vu=Vu" —Vu~. Then, putting v = u~ (notice Tr(u~) =0,
and then u™ € H}(Q)),

/Vu-Vu_:—/ V|2 > 0
Q Q

Then Vu™ =0, so u~ = 0 and finally we have u = u™ > 0.




The Laplacian: The Dirichlet Problem

Find a function u in Q that is a solution of Au = 0 with a
prescribed boundary value u = g in 09Q.

Depending on the methods used, the space of functions and the
exact definitions of Q2 can be different.



The Laplacian: Energy Methods

Let Q be a bounded Lipschitz domain. Let g € L?(0Q). Let
H;(Q) = {f € HY(Q) such that Tr(f) = g}.

We define the Dirichlet energy of a function:

E(u) = ;/Q‘VUF

If we find a minimizer v of E in Hx(), then v will be a solution
for the Dirichlet problem.



The Laplacian: Energy Methods 2

A necessary condition for a minimizer v is, for all ¢ € H&(Q),

d
E(v)§E(v+tgp):>aE(v+t<p)ZOat t=0

d
/ Vv + tVp|? = t/(2th Vo + t2|Ve|?) =

:2/Vv-V¢:—2/Avg0
Q Q

Av =0



The Laplacian: Energy Methods 3

Theorem (Existence and uniqueness)

Let Q be a bounded Lipschitz domain, and suppose H; # (. Then,
there exists a unique solution v for the Dirichlet problem.
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Existence

Let Eg be the infimum of E(w) in w € HE(Q). Take uj € Hx(Q)
such that E(ux)Ey. As Vuy is uniformly bounded in L2, uy are
uniformly bounded in H, and then there is a partial subsequence
convergent in L? and weakly convergent in H! to a limit v, because
the inclusion is compact. Also, Tr is compact, so Tr(v) = g as well.
By Fatou's lemma, E(v) < liminf E(uk), and then v is a minimizer.

v




The Laplacian: Energy Methods 4

Uniqueness (energy)

The functional E is strictly convex, hence it can only attain one
minimum because H; is a convex set. This implies the minimizer
must be unique.

If v is a solution, then putting u € H3(Q),

1 ) = / IVVI2 + 2V - Vu + [Vul2 = E(v) + 0+ E(u)
Q

Hence E(v) < E(v + u) for all suitable v and v is a minimizer.
Then the solution is unique.

Uniqueness (comparison)

Suppose there are two solutions vq, v». Consider the function
w=v1 — va € H}(Q), that satisfies Aw = 0. We can apply the
maximum principle to w and —w, and we get w = 0.




The Laplacian: Viscosity Methods

Definition

A function u € C(Q) is called subharmonic if for every v € C? that
touches it from above in xg € £, meaning v > u in Q,

v(x0) = u(x0), Av(xo) > 0.

@ u(x) = |x]| is subharmonic in R.
o u:[-1,1] = R, u(x) =1 — x[_1, satisfies the condition but
it is not subharmonic because it is not continuous.

We say a continuous function w is superharmonic if —w is
subharmonic.

We say a continuous function w is harmonic if it is subharmonic
and superharmonic.



The Laplacian: Viscosity Methods 2

Proposition

If up, up are subharmonic, max(uy, uz) is subharmonic as well.

Easy part of the proof of existence

Take the set S = {u € C(Q) such that u is subharmonic}.

v(x) = sup u(x)
ues

Then v is subharmonic because it is a supremum of subharmonic
functions.

The hard part is proving that v is actually harmonic.



More General Elliptic Operators

Elliptic PDEs are generalizations of the Laplace and Poisson
equations, involving operators related to the Laplacian.

Au = Tr(D?u) = Div(Vu).

This identity yields two natural generalizations of the Laplace
operator, named in nondivergence and divergence form.

Lu=Tr(A(x)D?u), Lu = Div(A(x)Vu).

AN, A > 0 such that Al < A(x) < Al



Divergence Form Operators

Energy methods are preferred, because we can integrate by parts.
We can recall what we did with the Laplacian and the proofs are
similar. Recall

/Q_Div(A(x)vU)VZ/QA(x)vu-vv:/Q(VV)TA(X)VU



Nondivergence Form and Pucci Operators

Energy methods cannot be adapted. We need viscosity methods.

Let 0 < A < A. We define the Pucci operators with the ellipticity
constants A\, A, where M is a n X n symmetric matrix:

MEM) =AD" i =AD" i,

;>0 ;<0
MEM) =AD" i =X D pi
wi<0 ;>0

where p; are the eigenvalues of M.




Nondivergence Form and Pucci Operators 2

Proposition

For any u such that D?u exists,

M™(D?v) < Lu < M (D?u)

Then the equation Lu = 0 can be relaxed to M D?u > 0,
M~D?u < 0. In certain proofs this is preferred to get rid of A(x).



The Obstacle Problem

Minimize the energy of a surface v : 2 C R” — R above an
obstacle .

min/ Vv|?, v>o.
Q
This is equivalent to a nonlinear elliptic PDE problem:

v>pin Q,
Av <0in Q,
Av =0 in the set v > ¢.



The Obstacle Problem: Energy Method

The proof is basically the same as for the unrestricted minimal
surface, i.e., the Laplace equation. We have to change Hx() by
the set {v € H; such that v > ¢}.

For the proof of uniqueness, we can recover the energy method or
adapt the proof by the comparison principle.



The Obstacle Problem: Viscosity Method

We must consider the least supersolution of the problem, that is,
define the pointwise infimum of all functions w € Hg1 satisfying

w > @in Q,
Aw <0in Q.

Then we can show that this function is actually harmonic when
v > Q.
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