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How do we solve PDEs?

Find a space of functions where existence and uniqueness are
viable.
Prove that, in fact, the solutions are in more desirable spaces.

For example, a good space to have existence and uniqueness is L2

or H1, and a good space to have finally the solutions could be C 1

or C∞.



Introduction: Weak Topology

Definition
Let E be a Banach space, and E ′ the space of continuous linear
functionals from E to R. We say fn is weak convergent to f in E if,
for any φ ∈ E ′, φ(fn)→ φ(f ). We note fn ⇀ f .

Example

E = L2(−π, π), fn(x) = sin(nx). Let φ ∈ E ′. φ(fn) =
∫ π
−π fng ,

g ∈ L2(−π, π), therefore g ∈ L1(−π, π). By the
Riemann-Lebesgue lemma, φ(fn)→ 0. Hence we say fn ⇀ 0.



Introduction: Compact Operators

Definition
Let E ,F be Banach spaces, a (linear) operator T : E → F is said
to be compact, if T (BE ) is a compact set in F .

Example
Finite rank operators are compact.
Integral operators are usually compact.

Proposition
Let T : E → F be compact, and let fn ⇀ f in E . Then,
T (fn)→ T (f ) in the strong (norm) topology of F .



Introduction: H1(Ω)

Definition
Let Ω be a Lipschitz domain.

H1 = {f : Ω→ R such that |f |, ‖∇f ‖ ∈ L2(Ω)}

H1(Ω) is a Hilbert space, with the product

< f , g >=

∫
Ω
fg +∇f · ∇g

Tr : H1(Ω)→ L2(∂Ω) is well defined, continuous and
compact, and for u ∈ C1(Ω), Tr u = u|∂Ω.
i : H1(Ω)→ L2(Ω), the inclusion, is compact.

Definition

H1
0 = {f ∈ H1(Ω) such that Tr(f ) = 0}



Introduction: Maximum Principle

Theorem (Maximum principle in weak form)

Let u ∈ H1(Ω)

{
−∆u ≥ 0 in Ω,

u ≥ 0 on ∂Ω.
Then, u ≥ 0 in Ω.

We have to understand −∆u ≥ 0 in the weak sense, this is,
integrating by parts and taking v ∈ H1

0 (Ω), v ≥ 0,∫
Ω
−∆u · v =

∫
Ω
∇u · ∇v ≥ 0



Introduction: Maximum Principle

Proof

Set u = u+ − u−, where u+, u− ≥ 0 and u+u− = 0.
∇u = ∇u+ −∇u−. Then, putting v = u− (notice Tr(u−) = 0,
and then u− ∈ H1

0 (Ω)),∫
Ω
∇u · ∇u− = −

∫
Ω
‖∇u−‖2 ≥ 0

Then ∇u− = 0, so u− = 0 and finally we have u = u+ ≥ 0.



The Laplacian: The Dirichlet Problem

Find a function u in Ω that is a solution of ∆u = 0 with a
prescribed boundary value u = g in ∂Ω.

Depending on the methods used, the space of functions and the
exact definitions of ∂Ω can be different.



The Laplacian: Energy Methods

Let Ω be a bounded Lipschitz domain. Let g ∈ L2(∂Ω). Let
H1
g (Ω) = {f ∈ H1(Ω) such that Tr(f ) = g}.

We define the Dirichlet energy of a function:

E (u) =
1
2

∫
Ω
|∇u|2

If we find a minimizer v of E in H1
g (Ω), then v will be a solution

for the Dirichlet problem.



The Laplacian: Energy Methods 2

A necessary condition for a minimizer v is, for all ϕ ∈ H1
0 (Ω),

E (v) ≤ E (v + tϕ)⇒ d
dt

E (v + tϕ) = 0 at t = 0

d
dt

∫
Ω
|∇v + t∇ϕ|2 =

d
dt

∫
Ω

(2t∇v · ∇ϕ+ t2|∇ϕ|2) =

= 2
∫

Ω
∇v · ∇ϕ = −2

∫
Ω

∆vϕ

∆v = 0



The Laplacian: Energy Methods 3

Theorem (Existence and uniqueness)

Let Ω be a bounded Lipschitz domain, and suppose H1
g 6= ∅. Then,

there exists a unique solution v for the Dirichlet problem.

Existence

Let E0 be the infimum of E (w) in w ∈ H1
g (Ω). Take uk ∈ H1

g (Ω)
such that E (uk)E0. As ∇uk is uniformly bounded in L2, uk are
uniformly bounded in H1, and then there is a partial subsequence
convergent in L2 and weakly convergent in H1 to a limit v , because
the inclusion is compact. Also, Tr is compact, so Tr(v) = g as well.
By Fatou’s lemma, E (v) ≤ lim inf E (uk), and then v is a minimizer.



The Laplacian: Energy Methods 4

Uniqueness (energy)

The functional E is strictly convex, hence it can only attain one
minimum because H1

g is a convex set. This implies the minimizer
must be unique.
If v is a solution, then putting u ∈ H1

0 (Ω),

E (v + u) =

∫
Ω
‖∇v‖2 + 2∇v · ∇u + ‖∇u‖2 = E (v) + 0 + E (u)

Hence E (v) ≤ E (v + u) for all suitable u and v is a minimizer.
Then the solution is unique.

Uniqueness (comparison)

Suppose there are two solutions v1, v2. Consider the function
w = v1 − v2 ∈ H1

0 (Ω), that satisfies ∆w = 0. We can apply the
maximum principle to w and −w , and we get w = 0.



The Laplacian: Viscosity Methods

Definition

A function u ∈ C(Ω) is called subharmonic if for every v ∈ C2 that
touches it from above in x0 ∈ Ω, meaning v ≥ u in Ω,
v(x0) = u(x0), ∆v(x0) ≥ 0.

Example

u(x) = |x | is subharmonic in R.
u : [−1, 1]→ R, u(x) = 1− χ[−1,0] satisfies the condition but
it is not subharmonic because it is not continuous.

We say a continuous function w is superharmonic if −w is
subharmonic.

We say a continuous function w is harmonic if it is subharmonic
and superharmonic.



The Laplacian: Viscosity Methods 2

Proposition

If u1, u2 are subharmonic, max(u1, u2) is subharmonic as well.

Easy part of the proof of existence

Take the set S = {u ∈ C(Ω) such that u is subharmonic}.

v(x) = sup
u∈S

u(x)

Then v is subharmonic because it is a supremum of subharmonic
functions.

The hard part is proving that v is actually harmonic.



More General Elliptic Operators

Elliptic PDEs are generalizations of the Laplace and Poisson
equations, involving operators related to the Laplacian.

∆u = Tr(D2u) = Div(∇u).

This identity yields two natural generalizations of the Laplace
operator, named in nondivergence and divergence form.

Lu = Tr(A(x)D2u), Lu = Div(A(x)∇u).

∃λ,Λ > 0 such that λI ≤ A(x) ≤ ΛI



Divergence Form Operators

Energy methods are preferred, because we can integrate by parts.
We can recall what we did with the Laplacian and the proofs are
similar. Recall∫

Ω
−Div(A(x)∇u)v =

∫
Ω
A(x)∇u · ∇v =

∫
Ω

(∇v)>A(x)∇u



Nondivergence Form and Pucci Operators

Energy methods cannot be adapted. We need viscosity methods.

Definition
Let 0 < λ < Λ. We define the Pucci operators with the ellipticity
constants λ,Λ, where M is a n × n symmetric matrix:

M+(M) = Λ
∑
µi>0

µi − λ
∑
µi<0

µi ,

M−(M) = Λ
∑
µi<0

µi − λ
∑
µi>0

µi

where µi are the eigenvalues of M.



Nondivergence Form and Pucci Operators 2

Proposition

For any u such that D2u exists,

M−(D2u) ≤ Lu ≤M+(D2u)

Then the equation Lu = 0 can be relaxed toM+D2u ≥ 0,
M−D2u ≤ 0. In certain proofs this is preferred to get rid of A(x).



The Obstacle Problem

Minimize the energy of a surface v : Ω ⊆ Rn → R above an
obstacle ϕ.

min

∫
Ω
|∇v |2, v ≥ ϕ.

This is equivalent to a nonlinear elliptic PDE problem:
v ≥ ϕ in Ω,

∆v ≤ 0 in Ω,

∆v = 0 in the set v > ϕ.



The Obstacle Problem: Energy Method

The proof is basically the same as for the unrestricted minimal
surface, i.e., the Laplace equation. We have to change H1

g (Ω) by
the set {v ∈ H1

g such that v ≥ ϕ}.

For the proof of uniqueness, we can recover the energy method or
adapt the proof by the comparison principle.



The Obstacle Problem: Viscosity Method

We must consider the least supersolution of the problem, that is,
define the pointwise infimum of all functions w ∈ H1

g satisfying{
w ≥ ϕ in Ω,

∆w ≤ 0 in Ω.

Then we can show that this function is actually harmonic when
v > ϕ.
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