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Daniel Gil Muñoz The reduction method



Introduction
Determination of the associated order

Induced Hopf Galois structures

1 Introduction
Hopf Galois structures
Greither-Pareigis theory
Hopf Galois module theory

2 Determination of the associated order
A motivating example
Matrix of the action
The reduction method

3 Induced Hopf Galois structures
Induced associated order
An application: Dihedral extensions
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pair (H, ·), where H is a K -Hopf algebra and · : H ⊗K L −→ L is
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We also say that L/K is H-Galois.
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Theorem (Greither-Pareigis)
There is an one-to-one correspondence between:

{(H, ·) | (H, ·) Hopf Galois structure of L/K},

{N ≤ Perm(X ) |N regular and G-stable}.

g ∈ G, η ∈ N =⇒ g(η) := λ(g)ηλ(g−1).

If N is regular and G-stable, its corresponding Hopf Galois
structure is

H = L̃[N]G = {x ∈ L̃[N] |σ(x) = x for all σ ∈ G}.

We say that (H, ·) is of type [N].
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Daniel Gil Muñoz The reduction method



Introduction
Determination of the associated order

Induced Hopf Galois structures

A motivating example
Matrix of the action
The reduction method

L = Q3(α), α root of f (x) = x3 + 3x2 + 3 in Q3.

Unique Hopf Galois structure of L/Q3: H with Q3-basis

w1 = Id w2 = (σ − σ−1)z w3 = σ + σ−1

where σ ∈ Gal(L̃/Q3) is a 3-cycle and z ∈ L−Q3, z2 ∈ Q3.

OL = Z3[α] =⇒ {1, α, α2} Z3-basis of OL.

1 α α2

w1 1 α α2

w2 0 3 + 9α + 2α2 −3− 30α− 9α2

w3 2 −3− α 9− α2

,
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Daniel Gil Muñoz The reduction method



Introduction
Determination of the associated order

Induced Hopf Galois structures

A motivating example
Matrix of the action
The reduction method

L = Q3(α), α root of f (x) = x3 + 3x2 + 3 in Q3.

Unique Hopf Galois structure of L/Q3: H with Q3-basis

w1 = Id w2 = (σ − σ−1)z w3 = σ + σ−1

where σ ∈ Gal(L̃/Q3) is a 3-cycle and z ∈ L−Q3, z2 ∈ Q3.

OL = Z3[α] =⇒ {1, α, α2} Z3-basis of OL.

1 α α2

w1 1 α α2

w2 0 3 + 9α + 2α2 −3− 30α− 9α2

w3 2 −3− α 9− α2

,
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h ∈ AH if and only if

1 0 2
0 0 0
0 0 0
0 3 −3
1 9 −1
0 2 0
0 −3 9
0 −30 0
1 −9 −1



h1
h2
h3

 ∈ Z9
3
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h ∈ AH if and only if1 0 2
0 1 3
0 0 6

h1
h2
h3

 ∈ Z3
3

if and only if h1
h2
h3

 =
1
6

6 0 −2
0 6 −3
0 0 1

c1
c2
c3


for some c1, c2, c3 ∈ Z3.

=⇒ {w1,w2,
−2w1−3w2+w3

6 } Z3-basis of AH .
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L/K H-Galois of degree n.

W = {wi}ni=1 K -basis of H, B = {γj}nj=1 K -basis of L.

For 1 ≤ j ≤ n, set

Mj(H,L) : =

 | | . . . |
(w1 · γj)B (w2 · γj)B . . . (wn · γj)B
| | . . . |

 ∈Mn(K ),

Definition
The matrix of the action of H over L is defined as

M(H,L) =

M1(H,L)

· · ·
Mn(H,L)

 ∈Mn2×n(K ).
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Matrix of the action
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Example
In the motivating example,

M1(H,L) =

1 0 2
0 0 0
0 0 0



M2(H,L) =

0 27 −3
1 81 −1
0 18 0


M3(H,L) =

0 −27 9
0 −270 0
1 −81 −1


M(H,L) =

M1(H,L)

M2(H,L)

M3(H,L)


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Proposition

Suppose that B = {γj}nj=1 is an OK -basis of OL. Given h ∈ H,

h ∈ AH ⇐⇒ M(H,L)h ∈ On2

K

Definition
A reduced matrix of M(H,L) is a matrix D such that there is
some unimodular matrix U ∈Mn(OK ) such that

UM(H,L) =

(
D
O

)

Equivalently, if

M(H,L) = dM, d ∈ K , M ∈Mn(OK ),

then D = dΦ with UM =

(
Φ

O

)
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Proposition

The reduced matrix of M(H,L) always exists.

Corollary

Let D be a reduced matrix of M(H,L). Given h ∈ H,

h ∈ AH if and only if Dh ∈ On
K .

Theorem (G., Rio)

Let D be a reduced matrix of M(H,L) and call D−1 = (dij)
n
i,j=1.

The elements

vi =
n∑

l=1

dliwl , 1 ≤ i ≤ n

form an OK -basis of AH .
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Example
In the motivating example:

D =

1 0 2
0 1 3
0 0 6

 is a reduced matrix of M(H,L).

The inverse is D−1 = 1
6

6 0 −2
0 6 −3
0 0 1

.

AH has a basis formed by

v1 = w1 v2 = w2 v3 =
−2w1 − 3w2 + w3

6
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L/K H-Galois extension of p-adic fields.

Reduction method
W K -basis of H, B OK -basis of OL.

1. Determine the matrix of the action M(H,L).

2. Decompose M(H,L) = dM, d ∈ K , M ∈Mn(OK ).
3. Find an unimodular matrix U such that UM is a square

matrix Φ and zero rows (for instance, Hermite normal
form).

4. Compute the inverse of D = dΦ. Its columns form an
OK -basis of AH .
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Induced Hopf Galois structures

Induced associated order
An application: Dihedral extensions

L/K Galois extension with group of the form

G = J o G′,

J E G, G′ ≤ G. Let L1 = LG′
, L2 = LJ .

r := [L1 : K ], s := [L2 : K ].

Theorem (Crespo, Rio, Vela)

If N1 ≤ Sr gives L1/K a H-G structure
and N2 ≤ Ss gives L2/K a H-G structure,
then N := N1 × N2 ≤ Sn gives L/K a H-G
structure.

The Hopf Galois structure of L/K given by N is called induced.
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L/K H-Galois extension of fields.

H = H1 ⊗K H2 induced.

What is the relation between M(H,L),
M(H1,L1) and M(H2,L2)?

Is it true that AH = AH1 ⊗OK AH2?

Definition
The Kronecker product of two matrices A = (aij) and B is the
matrix defined by blocks as

A⊗ B = (aijB).
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Daniel Gil Muñoz The reduction method



Introduction
Determination of the associated order

Induced Hopf Galois structures

Induced associated order
An application: Dihedral extensions

Definition
We say that a basis B of L is induced if M(H,LB) and
M(H1,L1)⊗M(H2,L2) are integrally equivalent.

Proposition (G., Rio)
The product of basis of L1 and L2 is an induced basis.

Theorem (G., Rio)

If L/K has some integral induced basis, then

AH = AH1 ⊗OK AH2 .

The same holds when L1/K and L2/K are arithmetically
disjoint.
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L/Q3 dihedral extension of degree 6.

The induced Hopf Galois structures of L/Q3 are the ones of
type C6.
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L is the splitting field over Q3 of
one of the polynomials:
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f splitting polynomial of L/Q3.

1. If f (x) = x3 + a, a ∈ {3,12,21}, then L/Q3 has an integral
induced basis and AH = AH1 ⊗Z3 AH2 .

2. If f (x) = x3 + 3x2 + 3, then L1/Q3 and L2/Q3 are
arithmetically disjoint and AH = AH1 ⊗Z3 AH2 .

3. If f (x) = x3 + ax + 3, a ∈ {3,6}, then AH 6= AH1 ⊗Z3 AH2

(it is not even a tensor product).
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