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Motivation

Interpret results from homotopy type theory in a particular
model of ∞-categories.

Study topological categories as a model of ∞-categories.

Prove that Moore path categories are a model of the
fundamental ∞-groupoid of a topological space.
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Infinity categories

In an ∞-category there is not only objects and morphisms between
objects, but n-morphisms between (n− 1)-morphisms for all n ≥ 1.

The composition is weak:
For any n-morphisms f , g and h
there is a (n + 1)-morphism

f ◦ (g ◦ h)⇒ (f ◦ g) ◦ h

For any n-morphism f there is
(n + 1)-morphisms

f ◦ Id⇒ f ⇐ Id ◦f
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Infinity groupoids

An ∞-groupoid is an ∞-category whose n-morphisms are invertible
up to (n + 1)-morphisms, for all n ≥ 1.
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Grothendieck’s homotopy hypothesis

Historically, there have been many definitions for ∞-categories, and
each one is called a model:

Globular models (Grothendieck, Batanin, Berger, etc.).
Quasi-categories (Joyal, Lurie).
Topological categories (Bergner, Lurie, etc.).

Grothendieck’s homotopy hypothesis
Any topological space up to homotopy is essentially
the same as an ∞-groupoid up to ∞-equivalence.

Given a model of ∞-categories and a topological space X , the
fundamental ∞-groupoid Π∞(X ) is the ∞-groupoid which
encodes the homotopical structure of X .
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Model categories

A model category is a complete and cocomplete category with
three distinguished classes of morphisms: weak equivalences
( ∼−→), fibrations (−�), and cofibrations (↪−→); satisfying certain
axioms relating them.

A pair of adjunct functors between model categories is called a
Quillen equivalence when it induces an equivalence between the
homotopy theories induced by the model structures.

Given a model of ∞-categories, the statement of Grothendieck’s
homotopy hypothesis is equivalent to finding a zigzag of Quillen
equivalences between the categories of topological spaces and
∞-groupoids.
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Example: Topological spaces

A map of topological spaces f : X → Y is a weak homotopy
equivalence if f induces a bijection between path components and
for any n ∈ N \ {0}

πn(f , x) : πn(X , x)
∼=−→ πn(Y , f (x)).

A map of topological spaces p : E → B is a Serre fibration if it
satisfies the homotopy lifting property with respect to any n-disk:

Dn E

Dn × I B
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Simplicial sets

The simplex category ∆ is the category with objects the linearly
ordered sets [n] := {0, 1, . . . , n} for all n ≥ 0, and morphisms all set
functions [n]→ [m] which are non-decreasing.

A simplicial set is a functor X : ∆op → Set. Simplicial sets with
natural transformations form a category sSet.

For each [n], a simplicial set X has a set denoted X [n] or Xn. In
addition to those sets, X is determined by its faces di : Xn → Xn−1
and degeneracies si : Xn → Xn+1, which satisfy the simplicial
identities.
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Idea of simplicial sets

Figure: A simplicial set X : ∆op → Set, from nLab wiki.
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https://ncatlab.org/nlab/files/SimplicialSetsIdea.jpg


Standard simplices and horns

The standard n-simplex is the simplicial set defined by

∆[n] := ∆( · , [n]).

The k-th horn Λk [n] is the sub-simplicial-set of ∆[n] obtained from
removing the k-th face.
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Quasi-categories and Kan complexes

A simplicial set X is called a quasi-category if for any n ≥ 1 and
0 < k < n, every map Λk [n]→ X admits an extension ∆[n]→ X
through the canonical inclusion Λk [n]→ ∆[n].

A simplicial set X is called a Kan complex if for any n ≥ 1 and
0 ≤ k ≤ n, every map Λk [n]→ X admits an extension ∆[n]→ X
through the canonical inclusion Λk [n]→ ∆[n].

Quasi-categories model ∞-categories with the n-simplices modeling
the n-morphisms, and Kan complexes model ∞-groupoids.
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Simplicial sets as model category

The category of simplicial sets can be considered the following two
model structures:

Quillen model structure sSetQ : Models ∞-grupoids because
Kan complexes are the fibrant objects.

Joyal model structure sSetJ : Models ∞-categories because
quasi-categories are the fibrant objects.

Therefore, the homotopy hypothesis for simplicial sets is equivalent
to finding a Quillen equivalence between sSetQ and the category of
topological spaces with the usual model structure.
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Formal nerve and realization

Let C be a cocomplete locally small category and Q : ∆→ C be a
cosimplicial object in C.

The Q-nerve NQ : C → sSet is defined by

NQ
n (A) = C(Q[n],A) ∀ [n] ∈ ∆.

The Q-realization | · |Q : sSet→ C is defined by

|X |Q =
∫ [n]∈∆

Xn ⊗ Q[n].

The Q-nerve and Q-realization always form an adjunction

| · |Q : sSet � C : NQ .
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Homotopy hypothesis for simplicial sets

There is a cosimplicial object ∆• defined for each [n] ∈ ∆ as the
topological space

∆n := {(t0, . . . , tn) ∈ Rn+1 | 0 ≤ ti ≤ 1,
∑n

i=0 ti = 1}.

Singular simplicial set Sing : Top→ sSet is the ∆•-nerve.

Geometric realization | · | : sSet→ Top is the ∆•-realization.

Those functors form a Quillen equivalence, proving the homotopy
hypothesis for simplicial sets:

Top sSetQ
|·|

Sing
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Enriched categories

LetM be a monoidal category with product × and unit I. Define
anM-enriched category C as:

A collection of objects C.

For every pair of objects X ,Y ∈ C, the morphisms between X
and Y are an object ofM denoted C(X ,Y ).
For every triple of objects X ,Y ,Z ∈ C, an associative
composition map

C(X ,Y )× C(Y ,Z )→ C(X ,Z ).

For every object X ∈ C, a morphism I → C(X ,X ) ofM which
represents the identity element.
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Topological categories

A topological category is a category enriched over the
category of (compactly generated) topological spaces, and the
category of all topological categories is denoted by Top-Cat.

Each topological category models an ∞-category, with the
higher homotopies of the map spaces as higher morphisms.

For every topological category C, the homotopy category hC
has the same objects as C and hC(X ,Y ) = π0(C(X ,Y )).

A topological category C is an ∞-groupoid if hC is a groupoid.
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Homotopy coherent nerve

A simplicial category is a category enriched in simplicial sets, and
the category of all simplicial categories is denoted by sSet-Cat.

There is a cosimplicial object ∆< defined for each [n] ∈ ∆ as the
simplicial category ∆<[n] with:

Obj(∆<[n]) = [n] = {0, . . . , n}
For every i , j ∈ Obj(∆<[n]), Hom(i , j) = (∆[1])(j−i−1)

The ∆<-nerve is called homotopy coherent nerve N< and the
∆<-realization is called simplicial path C. There is a Quillen
equivalence:

sSetJ sSet-Cat
N<

C
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Homotopy hypothesis for topological categories

Top sSetQ sSetJ sSet-Cat Top-Cat
Singe

|·|e

The geometric realization | · | and the singular simplicial
set Sing form a Quillen equivalence.
The enriched geometric realization | · |e and the enriched
singular simplicial set Singe form a Quillen equivalence.
The simplicial path C and the homotopy coherent nerve
N< form a Quillen equivalence.
The functors k! and k ! a localization adjunction between the
Joyal and Quillen model structures.

Top sSetQ ∞-Grpd.
|·|

Sing k ! ◦N< ◦Singe

|·|e ◦C ◦ k!
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singular simplicial set Singe form a Quillen equivalence.
The simplicial path C and the homotopy coherent nerve
N< form a Quillen equivalence.
The functors k! and k ! a localization adjunction between the
Joyal and Quillen model structures.
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Moore path categories

For each topological space X , define the Moore path category
ΠM
∞(X ) as the ∞-grupoid such that:

The objects are points of X .

Each homset ΠM
∞(X )(x , y) is equal to

PM
x ,y X = {(f , r) ∈ XR+ × R+ | f (0) = x and f (s) = y ∀s ≥ r}.

The composition is defined by

◦ : PM
x ,y X × PM

y ,zX −→ PM
x ,zX

((f , r), (g , s)) 7−→ (f ∗ g , r + s)

(f ∗ g)(t) =
{

f (t) if 0 ≤ t < r
g(t − r) if t ≥ r
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Classifying space

A classifying space B(G) of a topological group G is a quotient of
a weakly contractible space E(G) by a proper free action of G .

There are functorial classifying spaces generalized to include the
case of group-like topological monoids, for example the Milgram
classifying space.

Let ΩM
x (X ) be the group-like topological monoid defined as PM

x ,xX .
The delooping functor D : tMon→ Top-Cat0 sends a topological
monoid M to the topological category with one object ∗ and
Hom(∗, ∗) = M.
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The fundamental ∞-groupoid as a Moore path category

Theorem
Let (X , x) be a path-connected well-pointed topological space. The
topological space |N<(Singe(DΩM

x (X )))| is a classifying space for
ΩM

x (X ) and, as a consequence,

|N<(Singe(DΩMX ))| ' X .

Hence, the ∞-groupoid ΠM
∞(X ) is weakly homotopy equivalent to

the ∞-groupoid (| · |e ◦ C ◦ k! ◦ Sing)(X ).
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