
Invariant manifolds and transport in an Earth-Moon
system perturbed by Sun’s gravity field
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Hamiltonian systems

I Newton’s second law gives rise to systems of second-order differential equations in Rn.

I That can be rewritten as a system of first-order differential equations in R2n.

I Being n an integer denoting the number of degrees of freedom of the system.

A Hamiltonian system is a system of 2n first order ordinary differential equations of the form

q̇i =
∂H

∂pi
(t, q, p), ṗi = −∂H

∂qi
(t, q, p), i = 1, ..., n, (1)

where

I H = H(t, q, p) is the Hamiltonian function, a smooth real-valued function defined for
(t, q, p) ∈ U , an open set in R× Rn × Rn.

I t denotes the time.

I q = (q1, ..., qn) and p = (p1, ..., pn) are the position and momentum vectors, respectively.

I Variables q and p are said to be conjugate variables.
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Hamiltonian systems

System (1) can be reformulated in terms of the 2n vector z = (q, p) and the 2n × 2n skew
symmetric matrix J and the gradient of the Hamiltonian function

ż = J∇H(t, z), J =

(
0 I
−I 0

)
where 0 is the n × n zero matrix and I is the n × n identity matrix.

• If the Hamiltonian function is independent of time, H = H(q, p), the differential equations
are autonomous and the Hamiltonian system is called conservative.

• If the Hamiltonian function is dependent of time, H = H(t, q, p), the differential equations
are non-autonomous and the Hamiltonian system is not conservative.
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Restricted Three-Body Problem (RTBP)

RTBP is an autonomous Hamiltonian system that describes the motion of an infinitesimal
particle subjected to the gravitational fields created by two punctual massive bodies, called
primaries, for us the Earth and the Moon, that are assumed to revolve in circular motion
around their barycentre, where the origin is set.

B In the synodic reference frame, the axis rotate with the primaries.

x−axis

y−axis

Moon

−1 + µ

Earth
µ

• Units are normalised, such that the gravitational
constant is 1:

• Length unit: Earth-Moon distance.
• Mass unit: sum of the Earth and Moon masses.
• Time unit: such that the Earth-Moon period is 2π.

• Earth, with mass 1− µ, is placed at (µ, 0).

• Moon, with mass µ, is placed at (−1 + µ, 0).

• Being µ = 0.012150582 the Earth-Moon mass
parameter.
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Restricted Three-Body Problem (RTBP)

The Hamiltonian function for the planar Earth-Moon system is:

HRTBP =
1

2
(p2x + p2y ) + ypx − xpy −

1− µ
rPE

− µ

rPM

where rPE and rPM are the distances to the particle from the Earth and from the Moon.

L4

L5

L1L2 L3

Moon Earth

• Five equilibrium points, Lagrangian points
Lj for j = 1, ..., 5, are found.

• Colinear points, L1, L2 and L3, are unstable.

• Triangular points, L4 and L5, are linearly
stable for the value of µ for the Earth-Moon
system.

• We are interested in L3.
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L3 in the RTBP

→ L3 equilibrium point is of centre × saddle type in the planar RTBP.

Due to the SADDLE part, we know that it has stable (W s) and unstable (W u) invariant
manifolds associated:

• W s is composed by points that
go towards the eq. point
forward in time.

• W u is composed by points that
go apart from the eq. point
forward in time.

• They are bounded to an
energy level.
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L3 in the RTBP

According to the Lyapunov Centre Theorem, there exists a one-parametric family of
periodic orbits emanating from L3 equilibrium point in the CENTRE direction.

• Each periodic orbit is also
partially hyperbolic; it has
stable and unstable invariant
manifolds associated.

• Each periodic orbit and its
associated manifolds are
bounded to an energy level.
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Bicircular Problem (BCP)

For an accurate analysis of L3 in the Earth-Moon system, it is necessary to introduce the
gravitational effect of the Sun.

→ A simple way of introducing this effect is through the Bicircular Problem, a modification
of the RTBP, that describes a restricted 4-body problem.

Assumptions about the third massive body (Sun):

• To be contained in the same plane of motion than the primaries (Earth and Moon).

• To revolve in circular motion around the original set up of the RTBP.

• To affect the motion of the particle but not the primaries.

The third massive body acts as a time-periodic perturbation of the RTBP.
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Bicircular Problem (BCP)

Moon Earth

Sun

ϑ

• Non-autonomous Hamiltonian
system, then energy is not conserved.

• ϑ = ωst, with ωs being the angular
velocity of the Sun, denotes the
angular position of the Sun respect
to the Earth-Moon system

HBCP(t) = HRTBP + ĤBCP(t), ĤBCP(t) = −ms

rPS
− ms

a2s
(y sin(ωst)− x cos(ωst))

being ms the mass of the Sun and rPS and as the distances from the Sun to the particle and to
the Earth-Moon barycentre.
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BCP as a time-periodic perturbation of the RTBP

BCP is said to inherit the dynamics of the RTBP.

NATURAL QUESTION: Do the invariant objects present on a Hamiltonian autonomous
system (like the RTBP) survive when the perturbations are introduced?

• This is one of the main questions to which KAM theory is devoted.

• From the works of Kolmogorov, Arnold and Moser, it is concluded that most of the
invariant solutions survive under the perturbation, increasing their angular dimension.

• The reason why some of the solutions do not survive is due to resonances between the
basic frequency vector of the system and the frequency introduced by the perturbation.
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Bicircular Problem (BCP)

L4

L5

L1L2 L3

Moon Earth

Sun

ϑ

• The five equilibrium points Lj for
j = 1, ..., 5 are replaced by periodic
orbits with the period of the
perturbation (T = 2π

ωs
).
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Dynamical substitute for L3 in the BCP

The dynamical substitute for L3 in the BCP is a
periodic orbit of period T , whose stability is
again of centre × saddle type.
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Then

• It has stable (W s) and unstable (W u) invariant manifolds associated.

• In the centre direction, there emanates a one-parametric family of two-dimensional
Lyapunov quasi-periodic solutions (2D invariant tori).
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Invariant tori and stability

Family of 2D invariant tori around L3 dynamical substitute

• A family of quasi-periodic orbits emerges in the centre direction from L3 periodic orbit.

• Each of the tori composing this family has two frequencies:

• one comes from the family of Lyapunov periodic orbits of L3 in the unperturbed system and
it is different for each torus,

• the other one is the frequency of the Sun, shared by them all.

Temporal Poincaré map P
Stroboscopic map at time equal to the period of the Sun (T ) is applied to the flow, reducing
one angular dimension. In this map:

• The dynamical substitute is seen as a fixed point.

• The family of 2D invariant tori is seen as a family of 1D invariant curves.
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Stroboscopic map at time equal to the period of the Sun (T ) is applied to the flow, reducing
one angular dimension. In this map:

• The dynamical substitute is seen as a fixed point.

• The family of 2D invariant tori is seen as a family of 1D invariant curves.

14 / 36



Curves in the map temporal Poincaré map

A two dimensional torus in the flow.

Apply a temporal Poincaré map corresponding to the period of one of the frequencies.

The intersection is an invariant curve.

We study the 2D tori of the flow through the 1D curves in the map.
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Invariant tori and stability

Family of 1D invariant curves around L3 in the map P

• Each curve, ϕ : T 7→ R2n with n = 2, is characterized by its rotation number ω.

• Each curve must satisfy invariance condition:

P(ϕ(θ)) = ϕ(θ + ω), θ ∈ T.

• For their computation we approximate each curve as a truncated real Fourier series:

ϕ(θ) ≈ α0 +
N∑
κ=1

ακ cos(κθ) + βκ sin(κθ),

where α0, ακ, βκ, are the Fourier coefficients with κ = 1, ...,N and θ ∈ [0, 2π), and look
for the invariance condition to be satisfied by means of a Newton method.
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Invariant tori and stability

Family of 1D invariant curves around L3 in the map P

• Each curve ϕ with rotation number ω, satisfies invariance condition:

P(ϕ(θ)) = ϕ(θ + ω).
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Invariant tori and stability

Linear behaviour around a quasi-periodic solution ϕ

• It is described by the linear quasi-periodic skew-product{
ϕ̄ = A(θ)ϕ,
θ̄ = θ + ω.

where A(θ) = Dϕ(P(ϕ(θ))) is the Jacobian of the Poincaré map on ϕ.

• We look for pairs of eigenvalue and eigenfunction (λ, ψ) that satisfy the generalized
eigenvalue problem (GEV),

A(θ)ψ(θ) = λTωψ(θ),

where Tω is the operator Tω : ψ(θ) ∈ C (T,C4) 7→ ψ(θ + ω) ∈ C (T,C4).

• We solve this system also in terms of Fourier series and by means of Newton methods.
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Invariant tori and stability

Linear behaviour around a quasi-periodic orbit ϕ

These 2D invariant tori are partially hyperbolic, with eigenvalues:
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• Stable eigenvalue λs < 1.

• Unstable eigenvalue λu > 1.

• λu = λ−1
s due to the Hamiltonian

structure.

These 2D tori have stable (W s) and unstable (W u) invariant manifolds associated.
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Invariant manifolds of invariant tori

• The stable (W s) and unstable (W u) invariant manifolds associated with two
dimensional quasi-periodic orbits, are three dimensional in the flow.

• In the temporal Poincaré map P, these manifolds are seen as two dimensional.

Stable/Unstable invariant manifolds in P can be parametrised with two parameters.

• The angle θ ∈ T along the invariant curve.

• A parameter σ ∈ R.
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Invariant manifolds of invariant tori

Linear approximation of invariant manifolds

We take an small displacement (σ ∈ R) in the hyperbolic (stable or unstable) direction:

P(ϕ(θ) + σψs,u(θ)) = P(ϕ(θ)) + σDϕ(P(ϕ(θ)))ψs,u(θ) + (σ2)

= ϕ(θ + ω) + σλs,uψs,u(θ + ω) + (σ2).

• The displacement must be taken in positive (σ > 0) and negative (σ < 0) values.

• σ ∈ [σ0, σ0λu] (or σ ∈ [σ0, σ0/λs ]) and θ ∈ T so that

(θ, σ) 7→ ϕ(θ) + σψs,u(θ)

parametrises a cylinder-shaped fundamental domain on the invariant manifold.

• Unstable manifolds are propagated forward in time and stable backward.
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Transport through L3 in the BCP
At every step of the integration we check if the orbits collide with some primary or if they leave
the system (defined as being further than 10 Earth-Moon distances from their barycenter).

Stable (green) and unstable (red) invariant manifolds corresponding to two invariant curves, in
the xy -plane.
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Transport through L3 in the BCP
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Transport through L3 in the BCP

Fundamental cylinder

Fundamental domain (the small “cylinder”) used for globalising the invariant manifolds, is
defined by two parameters (θ, σ).

For example, the parametrization of the fundamental region of the unstable manifold for an
invariant curve ϕ is perfomed as:

(θ, σ) ∈ [0, 2π]× [σ0, λuσ0] 7→ ϕ(θ) + σψu(θ),

for σ0 > 0 and σ0 < 0.

With these two parameters we define a mesh of initial points of the four invariant manifolds
for an invariant curve and colored them according to their fate.
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Transport through L3 in the BCP
Color (fate): Purple (Earth), red (Moon), yellow (leaving the system), or black (neither).
Invariant torus at 0.03335 from L3.

Unstable manifold,
Left/right, taking
positive/negative
displacement.

Stable manifold,
Left/right, taking
positive/negative
displacement.
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Transport through L3 in the BCP
Color (fate): Purple (Earth), red (Moon), yellow (leaving the system), or black (neither).

Unstable manifolds
of invariant tori
at 0.19607 from L3.

Unstable manifolds
of invariant tori
at 0.30902 from L3.
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On the existence of heteroclinic orbits

A phenomenom observed thanks to the not conservation of the energy: some orbits suggest the
existence of intersections between the manifolds of different invariant curves near L3.
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Left, an orbit that goes from the Moon surface to the outside system through (a priori) an inner
torus. Right, an orbit that goes from the Moon to the Earth through (a priori) an outer torus.
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Lunar meteorites

B It is known that:

• Moon surface suffers several impacts every year.

• If the velocity of the crater ejecta is higher than the lunar escape velocity (≈ 2.38 km/s),
they get free from the Moon gravity and become lunar meteorites.

• Some lunar meteorites are found on the Earth.

B We have thought that:

Stable invariant manifolds that goes from the Moon to L3 vicinity and connect with
unstable invariant manifolds that leave this surroundings towards the Earth, may explain the
travel that lunar meteorites make to reach our planet.

In fact, several of these connections have been found for the BCP.
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Lunar meteorites

Origin of these trajectories: intersection of the W s of L3 with the Moon’s surface

• To study the sensitivity of these trajectories we modify some of them:

• Mantain their initial positions x and y , as well as the initial time, solar phase ϑ = ωst.

• Modify their initial velocity modules and angle directions of the velocity vector, such that
a mesh of 106 initial conditions is swept.

• Analyse the destination.
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Transport in a realistic model

Bicircular Problem dependence on the time allows the conversion to a realistic model keeping
the information of the relative positions of the Earth, Moon and Sun.

Change of coord. and time between models

Time: In the BCP at t = 0 or t = NTT (NT ∈ Z), the positions of the Earth, the Moon and
the Sun correspond to a lunar eclipse, TECLIPSE in Julian days.

→ any t 6= 0 corresponds to some days before or after the eclipse.

Coordinates: The conversion to the ecliptical system with the origin in the Solar System
centre of mass involves the coordinates of Earth, Moon and their barycentre at that real time.

→ we take the coordinates of Earth, Moon and their barycentre from JPL database (Jet
Propulsion Laboratory).
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Change of coordinates

Let RE (VE ) and RM (VM) be the positions (velocities) of the Earth and the Moon, taken from
the Solar System center of mass.

The relation between the position of a particle in the adimensional system (a) with the origin
at the Earth-Moon barycentre and its position in the ecliptical system (e) with the origin at
the Solar System c.o.m., is given by:

e = kCa + b,

where:

• k = ||RE − RM || is the change of scale factor.

• C is a rotation matrix that depends on RE , RM , VE and VM .

• b is Earth-Moon barycenter taken from Solar System center of mass.
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Lunar meteorites

Objective: to check the results obtained with the Bicircular model for the lunar meteorites in a
more realistic model.

• Apply the change of coordinates and time to each initial condition in our
adimensional system to translate them to the ecliptic system.

• Each initial condition is integrated in a N-body problem (Earth, Moon, Sun and
planets).

• Positions and velocities of the massive bodies are obtained from the JPL ephemeris
DE405 at the right time.

• Analyse destination.
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Lunar meteorites

BCP JPL

Horizontal axis: |v| (km/s). Vertical axis: angle dir. (degrees).

Color (fate): Purple (Earth), Red (Moon), Yellow (leaving the system), Black (neither).
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Conclusions

I We have analysed the dynamical system described by the BCP: a time-periodic
perturbation of an autonomous system.

I The role of L3 in the planar Sun-Earth-Moon system.

I We have numerically computed and analysed:

I The family of 2D invariant tori that emanates from L3 and their linear behaviour.
I The linear approximation of the hyperbolic invariant manifolds.
I Connections between stable and unstable manifolds of L3 tori.

I In this talk special attention was paid to an astrodynamical application:

I The behaviour of lunar meteorites found on the Earth surface.

I Others applications we have accomplished:

I Describe and compute the high order approximation of these stable and unstable invariant
manifolds.

I Use them to analyse the capture of an asteroid in the BCP.
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Thank you for your attention!
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