
DEGREE OF SYMMETRY OF MANIFOLDS AND THE TORAL RANK CONJECTURE

JORDI DAURA SERRANO

Abstract. This notes are an expanded version of talk given at SIMBA on 06/04/2002 with the same
title. They are a brief introduction to the theory of topological transformation groups, a field of math-
ematics which studies the symmetries of topological spaces. The notes are divided in 3 parts. In the
first we introduce the basic definition and properties of group actions. Thereafter, we explain the slice
theorem, one important geometric tool to study group actions. Finally, we introduce the problem of
finding the degree of symmetry of a manifold and the toral rank conjecture.

1. Basic definitions and properties

The aim of the theory of topological transformation groups is to describe and study the symmetry
of topological spaces. One of the fundamental questions of this theory is given a compact group G
and a topological space X, is there an (effective) action of G on X?

This questions is really hard to answer, so it is usual to study more approachable variations of the
question. For example, given a topological space X, how "big" a group G acting on X can be? The
toral rank conjecture ask this questions for a special kind of toral actions. If it was true, it would
give an upper bound on the dimension r of a torus Tr which can act almost-freely on X in terms of
the cohomology of X.

Notation 1.1. In this notes, X will always denote a connected Hausdorff topological space and M a connected
topological manifold. We will state explicitly when the manifold is smooth.

We start by defining the basic objects of this theory:

Definition 1.2. A topological group G is a Hausdorff topological space together with a continuous group
action G × G −→ G (denoted by (g, h) 7→ gh) which makes G into a group and such that the map G −→ G
such that g 7→ g−1 is continuous. If G is a smooth manifold and the product and inverse maps are smooth we
say that G is a Lie group.

Definition 1.3. A continuous group action of G on a topological space X is a continuous map Φ : G×X −→
X such that:

(1) Φ(gh, x) = Φ(g, Φ(h, x)) for all g, h ∈ G and x ∈ X.

(2) Φ(e, x) = x for all x ∈ X, where e is the identity element of G.

We can define a smooth action analogously, by replacing X for a smooth manifold, G for a Lie group
and asking Φ to be smooth.

Notation 1.4. We write gx = Φ(g, x) and ϕg : X −→ X for the map such that ϕg(x) = gx. The space X is
called (left) G-space.
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Remark 1.5. Note that we have a group morphism ϕ : G −→ Homeo(X) such that ϕ(g) = ϕg. If the
action is smooth, we have a group morphism ϕ : G −→ Diff(M).

Example 1.6. (1) The group GL(n, R) acts linearly on Rn. This action induces a linear action of the
subgroup O(n) on Sn−1.

(2) The group S1 acts by rotations around an axis on S2.

(3) Let M = R × R/ ∼ with the equivalence relation (x, y) ∼ (x + n, (−1)ny) for every b ∈ Z be the
the Möbius strip. We have a S1 action of M such that e2πit[x, y] = [x + 2t, y].

S1

Definition 1.7. Let G be a group and X and Y G-spaces. A continuous map f : X −→ Y is said to be
equivariant if it fulfils that f (gx) = g f (x) for all g ∈ G and x ∈ X.

Definition 1.8. Let G be a group acting on X and let x ∈ X, then:

• The stabilizer of x is Stab(x) = Gx = {g ∈ G : gx = x}. Note that Gx is a closed subgroup of G. It
can also be called isotropy subgroup of x.

• The orbit of x is O(x) = Gx = {gx : g ∈ G}. The space of all orbits will be denoted by X/G.

Note that we can define an equivalence relation in X such that x ∼ y if and only if G(x) = G(y)
(that is, there exists g ∈ G such that y = gx). Thus, we have that X/G is a topological space with
the topology induced by the map π : X −→ X/G that sends each point to its orbit.

Group actions can have the next properties:

Definition 1.9. Let G be a group acting on X. Then:

(1) The action is said to be effective if
⋂

x∈X Gx = {e} (or alternatively, ϕ : G −→ Homeo(X) is
injective).

(2) The action is almost free if Gx is finite for all x ∈ X, and it is free if Gx = {e} for all x ∈ X.

(3) The action is transitive if for all x, y ∈ X there exists g ∈ G such that y = gx (or alternatively,
Gx = X for a x ∈ X).

Until now, we have not introduced the compactness assumption on G, but this condition is necessary
to have really strong properties which non-compact group actions do not have. The next proposition
summarises some of the first properties of compact group actions (see [2, I.3.1.]).

2



Proposition 1.10. Let G be a compact group acting on X, then:

(1) The map Φ : G × X −→ X is a closed map.

(2) The orbit space X/G is Hausdorff. X is compact if and only if X/G is compact.

(3) The quotient map π : X −→ X/G is closed and proper.

Remark 1.11. (Non-compact vs. compact group actions): We define an action R of T2 such that t(e2πix, e2πiy) =

(e2πi(x+t), e2πi(y+at)), with a ∈ R. The action behaves differently depending on if a is rational or irrational.
If a = r/s is rational, then the action is not effective, since the element s ∈ R acts like the identity in T2.
In consequence, this action induces an effective action of S1 = R/(sZ) on T2. On the other hand, if a is
irrational, the action of R on T2 is free, but the orbit for any (x, y) ∈ T2 is dense in T2. In particular T2/R

is homeomorphic to S1 with the trivial topology. In particular, T2/R is not Hausdorff.

a ∈ Q a ∈ R \ Q

(Continuous vs. smooth group actions): In general continuos group actions are more difficult to study than
smooth group actions. Let G be a compact Lie group acting on a manifold M, we denote by MG = {x ∈ M :
gx = x, ∀g ∈ G} the set of fixed points. If the actions is smooth then MG is a compact submanifold. On
the other hand, if the action is continuous, MG is not necessarily a topological manifold. For example, Bing
showed that there is an involution (a Z2 action) in S3 whose fixed point set is an Alexander horned sphere.

Remark 1.12. An extra condition that we can impose to non-compact group actions is the action to be proper,
which means that G × M −→ M × M such that (g, x) 7→ (gx, x) is proper (the preimage of compact sets
are compact). A lot of the statement for compact group actions are also valid on the setting of non-compact
proper group actions.

Given a G-space X, we want to understand and classify the different orbits that this action can
produce. We define the evaluation map at x ∈ X to be the continuous map evx : G −→ X such that
evx(g) = gx.

However, note that we have a bijective map αx : G/Gx −→ Gx such that αx(gGx) = gx. Moreover if
G is compact then αx is a continuous map of a compact to a Hausdorff space which implies that αx

is closed. Therefore:

Lemma 1.13. (see [2, I.4.1.]) If G is compact, then αx is a homeomorphism.

Thus every orbit is homeomorphic to a coset space G/H where H is a closed subgroup of G. In
consequence, we need to study coset spaces G/H.
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Lemma 1.14. (see [2, I.4.2.]) Let G be a compact group and H and K closed subgroups. Then:

(1) There exists an equivariant map G/H −→ G/K if and only if there exists a ∈ G such that aHa−1 ⊂
K.

(2) Let H and K be closed subgroups of G and assume that there exists a ∈ G such that aHa−1 ⊂ K,
then the map RK,H

a : G/H −→ G/K such that RK,H
a (gH) = ga−1K is well-defined and equivariant.

Any equivariant map G/H −→ G/K is of this form.

Proof. Let f : G/H −→ G/K be an equivariant map. We know that f (eH) = a−1K for some a ∈ G
and since f is equivariant, we have that f (gH) = ga−1K for all g ∈ G. In particular, given h ∈ H we
have that f (hH) = ha−1K = a−1K. This implies that aha−1 ∈ K for all h ∈ H. Conversely, if there
exists a ∈ G such that aHa−1 ⊂ K, then the map f : G/H −→ G/K such that f (gH) = ga−1K is well
defined and equivariant. □

Remark 1.15. Since G is compact, we have that aHa−1 ⊂ H implies that aHa−1 = H.

Corollary 1.16. If there exists equivariant maps G/H −→ G/K and G/K −→ G/H then H and K are
conjugate and these maps are homeomorphisms.

Let G be the category of G-orbits (where the objects are homogeneous spaces G/H and the mor-
phisms are G-equivariant maps between them). We define an equivalence relation such that for
X, Y ∈ G we have that X ∼ Y if and only if there exists an equivariant homeomorphism f : X −→ Y.
The equivalence classes under this relation are called orbits types and we will denote the equiva-
lence class of X by type(X). By lemma 1.13, we can always choose a homogeneous space G/H as a
representative of each orbit type. Moreover, we can define a partial order relation in G/ ∼ such that
type(X) ≥ type(Y) if and only if there exists an equivariant map F : X −→ Y. Note that that we
have a minimum and maximum elements corresponding to type(G/G) and type(G) respectively.

Analogously, given an orbit X which is equivalent to G/H, we define the isotropy type of X to
be the conjugacy class of H in G, which we will denote by (H). In the set of conjugacy classes of
closed subgroups of G there is a partial order such that (H) ≤ (K) if and only if H is conjugate to a
subgroup of K. Then, the lemma 1.14 implies that we have an anti-isomorphism of partially ordered
sets given by type(G/H) 7→ (H).

Example 1.17. In the case of the action of S1 on the Möbius strip M from the first example there are two
orbit types, type(S1) and type(S1/Z2). They correspond respectively to the purple and green orbit from the
picture below:
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Orbit and isotropy types are a good tool to describe the structure of a manifold with a G-action.
Thus, given a smooth manifold M, we will denote by M(H) the union of all orbits with isotropy type
(H).

Theorem 1.18. Let G be a compact Lie group acting on a connected smooth manifold M, then there exists
a maximum orbit type G/H on M. The set M(H) is connected and dense in M and M(H) is connected in
M/G.

The proof can be found in [5, Theorem 4.27.] and in the more general case of linearly smooth actions
in [2, IV.3.1.].

Theorem 1.19. Let G be a compact Lie group acting on a compact connected smooth manifold M, then there
are finitely many orbit types.

See [5, Theorem 4.23] for a proof of the theorem.

2. The slice theorem

The slice theorem is a tool to study the structure of the group actions, which enables us to deduce
properties of M/G and the quotient map π : M −→ M/G. We start by recalling some definitions.

Definition 2.1. Let F be a right G-space and let E and B be topological Hausdorff spaces. A fiber bundle
over B (base space) with total space E, fiber F and structure group G is a map p : E −→ B together with a
collection U of (U, ϕ) pairs of open subsets of B and homeomorphism ϕ : F × U −→ p−1(U) (called local
trivialization charts) such that:

1 The diagram

F × U p−1(Ui)

Ui

ϕi

p

commutes for every (U, ϕ) ∈ U .

(2) The collection of open sets {U : (U, ϕ) ∈ U} is an open covering of B.

(3) If (U, ϕ) ∈ U and V ⊂ U, then (V, ϕ|F×V) ∈ U .

(4) If (U, ϕ) and (U, ψ) are in U , there exists a continuous map θ : U −→ G such that ψ( f , x) =

ϕ( f θ(x), x) for all f ∈ F and u ∈ U.

(5) The set U is maximal among collections satisfying the preceding conditions.

If p : E −→ B is a G-principal bundle, then there exists a free action of G on E such that p induces a
homeomorphism B −→ E/G. Thus, every principal G-bundle induces a free action of G. The slice
theorem will help to prove the converse statement in the case where G is a compact Lie group acting
smoothly on a smooth manifold E. In order to explain the slice theorem, we first need to introduce
the concept of associated bundle, tube an slice.

5



Let F be a left G-space and p : E −→ B a G principal bundle. The associated bundle construction is
a way to construct fiber bundles with fiber F by attaching F to each fiber of a principal G-bundle.
Since, we have a free right action of G on E, we can construct a free left action on E × F which fulfils
that g(e, f ) = (eg−1, g f ). The quotient space space (E × F)/G is denoted by E ×G F and its elements
by [e, f ]. Then, we have a map π : E ×G F −→ B such that π[e, f ] = p(e). Then (see [2, II.2.4.]):

Lemma 2.2. The map π : E ×G F −→ B is a fiber bundle with fiber F and structure group G.

If (U, ϕ) is a local trivialization of the principal G-bundle, then the local trivializations of the asso-
ciated bundle are given by (U, ϕ′), where ϕ′(u, f ) = [ϕ(u, e), f ].

Lemma 2.3. Let G be a Lie group and H a close subgroup of G. If M is an effective H-manifold then
π : G ×H M −→ G/H is and smooth fiber bundle and G ×H M is a smooth manifold.

Assume that we have a smooth action of a compact Lie group G on a manifold M, then the orbit
Gx is a submanifold of M, then we can use the tubular neighbourhood theorem to find an open
neighbourhood T of Gx with good properties. However, in general T will not be invariant by G. The
concept of a tube and slice are defined in order to construct neighbourhoods of Gx which behaves
well with respect the group action.

Definition 2.4. Let G be a compact group and X be a G-space and Gx an orbit of isotropy type (H). A tube
about Gx is a continuous map ϕ : G ×H A −→ X which is a homeomorphism onto an open neighbourhood
of Gx in X, where A is a H-space.

A slice at x is a subspace S ⊂ X containing x which fulfils that Gx(S) = S and the map G ×Gx S −→ X
such that [g, s] 7→ gs is a tube about Gx.

These next two characterizations of a slice will be useful to prove the slice theorem:

Proposition 2.5. (see [2, II.4.2.]) Let X be a G-space, let x ∈ S ⊂ X and put H = Gx. Then the following
statements are equivalent:

(1) There exists a tube ϕ : G ×H A −→ X about Gx such that ϕ[e, A] = S.

(2) S is a slice at x.

(3) GS is an open neighbourhood of G(x) and there exists an equivariant retraction r : GS −→ Gx such
that r−1(x) = S.

Proposition 2.6. (see [2, II.4.4.]) Let X be a G-space and let x ∈ S ⊂ X. Then S is a slice if and only if:

1- S is closed in G(S).

2- G(S) is an open neighbourhood of Gx

3- Gx(S) = S.

4- If (gS) ∩ S ̸= ∅ then g ∈ Gx.
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The slice theorem asserts that, for certain conditions on the topological space and the group action,
there exists a slice for every x ∈ X. The theorem was first proved by Gleason in the case of group
actions is free. The proof of the general statement has contribution from Mongomery, Zippin,
Koszul, Yang, Mostow and Palais.

Theorem 2.7. Let G be a compact Lie group acting on a completely regular topological space X. Then there
exists a slice for every x ∈ X.

We start by proving the case where G is a finite group. In this case, we only need X to be Hausdorff:

Theorem 2.8. Let G be a finite group acting on a Hausdorff topological space X. Then there exists a slice for
each x ∈ X.

Proof. Let x ∈ X, then the orbit of x is of the form Gx = {x1, ..., xr} for some r ∈ N which divides
the order of G. We assume that x1 = x. Because X is Hausdorff, there exists a collection of open
neighbourhood {Ui}i=1,...,r such that xi ∈ Ui for all i and Ui ∩ Uj ̸= ∅ if and only if i = j.

Now we consider the set F = G \ Gx. For each g ∈ F, we define Ug = g−1Uj ∩ U1, where j is
such that gx = xj. Note that g(Ug) ⊂ Uj. Therefore, we define the open neighbourhood of x,
V =

⋂
g∈F Ug ⊂ U1 which fulfils that g(V) ∩ V = ∅ for all g ∈ F.

U1

U2

U3

U4

Finally, we define S =
⋂

g∈Gx
g(V). The set S is a Gx-invariant neighbourhood of x. Moreover, it

fulfils that if g(S) ∩ g′(S) ̸= ∅ the gGx = g′Gx. This is a consequence of the fact that g(S) and g′(S)
are inside the same Uj, and therefore gx = g′x and in consequence g′g−1 ∈ Gx.

Therefore, we define a map ψ : G ×Gx S −→ GS ⊂ X such that ψ[g, s] = gs. Note that ψ fits into the
commutative diagram

G × S GS

G ×Gx S

Φ

π
ψ

The map ψ is injective since if ψ[g, s] = ψ[g′, s′] then g′s′ = gs, which implies that g−1g′s′ = s. By
the choice of S, we have that g−1g′ ∈ Gx and therefore [g, s] = [g′, s′]. The map is clearly surjective
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since Φ is surjective. The map is clearly continuos and it is also closed, since Φ is closed. Hence, we
can conclude that ψ is a homeomorphism.

S1

S2

S3

S4

If we define the action of G on G ×Gx S given by g′[g, x] = [g′g, x] then ϕ is G equivariant. Thus ψ is
the desired tube and S is a slice. □

The smooth version of the the slice theorem is one of the more important cases, and it is one of the
main tools to proof the continuous version. We first proof the slice theorem when the action is free.

Theorem 2.9. Let G be a compact Lie group acting freely and smoothly on a smooth manifold M. Then there
exists a slice for every x ∈ M.

Lemma 2.10. Let G be a compact Lie group acting smoothly on a smooth manifold M and let x ∈ M such
that Gx = {e}. Then αx : G −→ M is an embedding and Gx is a submanifold of M.

Proof. We already know that αx is a homeomorphism. Thus, we only need to proof that it is an
immersion. Because αx is G-equivariant, we have that dα|g · dg|e = dϕg|xdαe for every g ∈ G,
therefore we only need to prove that the map dαe : TeG = g −→ Tx M is injective.

In general, if Gx is the isotropy subgroup at x and gx be the Lie subalgebra of Gx, then we want to
see that Ker dαe = gx. In order to proof this equality, we will use the exponential map exp : g −→ G.

Recall that exp is characterized by the fact that for every v ∈ g, the curve γ : R −→ G such that
γ(t) = exp(tv) is a group morphism and d

dt exp(tv)t=0 = v. Moreover, if H is a closed subgroup of
G than h = {v ∈ g : exp(tv) ∈ H for all t ∈ R}.

For v ∈ g, we have that d evx|e(v) = d
dt (exp(tv)x)|t=0. If v ∈ gx, then exp(tv) ∈ Gx and the

curve t 7→ exp(tv)x is constant. In consequence v ∈ Ker d ev|e. Conversely, assume that v ∈
Ker d ev|e and consider the curve x 7→ exp(tv)x, then for all s ∈ R we have that d

dt (exp(tv)x)|t=s =

exp(sv)∗ d
dt (exp(tv)x)|t=0 = 0. This means that x 7→ exp(tv)x is a constant curve, which means that

exp(tv) ∈ Gx and v ∈ gx.

Finally, since Gx = {e} (which means that evx = αx), we have that gx = {0} and αx is an immersion.
□
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Therefore, the smooth and free version of the slice theorem tells us that we have a tube G× A −→ M
where A is a smooth manifold, and moreover the tube is an embedding.

Proof. Firstly, note that the smooth action of G on M induces a smooth action of G on the total space
of tangent bundle TM, which fulfils that g(y, v) = (gy, dg|y(v)) for all y ∈ M and v ∈ Ty M and
g ∈ G. We want to find a G-invariant Riemannian metric on M. Given an arbitrary metric ρ, we
define a new metric ρG such that ρG(v, w)y =

∫
G ρ(dg|y(v), dg|y(w))gydµ(g) for all v, w ∈ Tx M, where

we use the Haar measure. This metric is clearly G-invariant and therefore G acts by isometries on
M.

Recall that the exponential map exp : U ⊂ TM −→ M goes from an open neighbourhood U of
{(y, 0) : y ∈ M} ⊂ TM to M such that exp(y, v) = γ(y,v)(1), where γ(y,v) : [0, 1] = I −→ M is the
unique geodesic such that γ(y,v)(0) = x and γ′

(y,v)(0) = v. With the chosen G-invariant metric, the
exponential map is equivariant. We have that exp(g(y, v)) = γ(gy,dg|y(v))(1). On the other hand, we
have that the image of the geodesic of γ(y,v) : I −→ M by g is a geodesic g(γ(y,v)) = γ̃ : I −→ M
such γ̃(0) = gy and γ̃′(0) = dg|y(v), since g is and isometry. By the uniqueness of geodesics, we
have that γ̃ = γ(gy,dg|y(v)) and in consequence exp(g(y, v)) = g exp(y, v) for all g ∈ G and (y, v) ∈ U.

Now we fix a point x ∈ M. Since G is compact, Gx is a compact submanifold of M and we can
decompose the tangent bundle over Gx as TM|Gx = T(Gx)⊕ N, where N is the normal bundle of Gx
in M. It is well known that for ϵ small enough, the exponential exp maps N(ϵ) = {v ∈ N : ||v|| < ϵ}
diffeomorphically to B(Gx, ϵ) = {y ∈ M : d(y, Gx) < ϵ}, where the norm and the distance is
induced by ρG. Note that we can identify Gx with the point (gx, 0) ∈ N(ϵ).

If we look at the point x, we have a decomposition Tx M = TxGx ⊕ Nx. We consider the disk
Vϵ = {v ∈ Nx : ||v|| < ϵ} and the map ψG × Vϵ −→ M such that ψ(g, v) = g expx(v). We want to
see that ψ is a tube about Gx and therefore S = expx(Vϵ) is a slice at x.

Since Gx = {e}, we have trivially that GxS = S. Now we want to prove that if gS ∩ S ̸= ∅ then
g ∈ Gx. Suppose that there exists v, w ∈ Vϵ and g ∈ G such that g exp(x, v) = exp(x, w). Then
exp((gx, dgxv)) = exp(x, w) and since exp is a diffeomorphism we obtain that gx = x, which means
that g ∈ Gx.

Finally, we would like to prove that ψ : G × Vϵ −→ GS ⊂ M is a G-equivariant diffeomorphism.
Let r : N(ϵ) −→ Gx be the retraction such that r(gx, w) = (gx, 0) and recall that αx : G −→ Gx is a
diffeomorphism. Then we define the map K : G × Vϵ −→ N(ϵ) such that K(g, v) = (gx, dgxv). This
map is continuous and smooth and has a smooth inverse K−1(y, v) = (α−1(r(y)), d(α−1 ◦ r)−1

|y (v))).
This implies that exp ◦K = ψ is a diffeomorphism. □

As a corollary, we obtain:

Corollary 2.11. Let M be a smooth manifold and let G be a compact Lie group acting smoothly and freely
on M. Then M/G is a smooth manifold of dimension dim M − dim G and π : M −→ M/G is a smooth
principal bundle.

Proof. Given Gx ∈ M/G, we consider the tube ψ : G × Vϵ −→ GS about Gx and slices as the proof
of the theorem. Note that π maps a slice S homeomorphically to an open set of M/G. Then, the
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charts that give a smooth structure on M/G are of the form (π(S), ϕ) where ϕ = (π ◦ exp)−1 :
π(S) −→ VS ⊂ Rn, where n = dim M − dim G.

The local trivializations charts of the principal G-bundle are (π(S), χ) are precisely ψ ◦ (IdG, ϕ) :
G × π(S) −→ GS. □

Let G be a compact Lie group and H a closed subgroup, then the coset space G/H is obtained as a
quotient space by the free action of H on G by right translations.

Proposition 2.12. Let G be a (compact) Lie group and H a closed subgroup, then G/H is a smooth manifold
and π : G −→ G/H is a principal bundle.

Moreover, given any smooth H-space F then the associated bundle π : G ×H F −→ G/H is smooth and
G ×H F is a smooth manifold.

In particular, we have a smooth local cross section σ : U −→ G, where U is an open subset of G/H
containing eH (recall that a local cross section is a map σ : U −→ G such that π ◦ σ = IdU).

Lemma 2.13. If G is a compact Lie group acting on a smooth manifold M, then the map αx : G/Gx −→ M
is an embedding (hence Gx is a submanifold of M).

This is a consequence of the fact that Ker d evx|e = gx.

Theorem 2.14. Let G be a compact Lie group acting smoothly on a smooth manifold M. Then there exists a
slice for every x ∈ M.

Proof. As before, we fix a G-invariant metric such that exp is G-equivariant. Now we fix a point
x ∈ M. Since G is compact, Gx is a compact submanifold of M and we can decompose the tangent
bundle over Gx as TM|Gx = T(Gx)⊕ N, where N is the normal bundle of Gx in M. It is well known
that for ϵ small enough, the exponential exp maps N(ϵ) = {v ∈ N : ||v|| < ϵ} diffeomorphically to
B(Gx, ϵ) = {y ∈ M : d(y, Gx) < ϵ}, where the norm and the distance is induced by ρG.

If we look at the point x, we have a decomposition Tx M = TxGx ⊕ Nx. Note that Gx induces a linear
(in fact orthogonal) action of Gx on Tx M, given by the differential maps dg|x : Tx M −→ Tx M. The
action can be restricted to Nx, since Nx is an invariant subspace. The disk Vϵ = {v ∈ Nx : ||v|| < ϵ}
is Gx-invariant. Indeed, given g ∈ Gx and v ∈ Vϵ, we have that exp(x, dg|xv) = exp(g(x, v)) =

g exp(x, v). Since G acts by isometries we have that g exp(x, v) ∈ B(Gx, ϵ). Finally, we use the fact
that exp : N(ϵ) −→ B(Gx, ϵ) is a diffeomorphism to conclude that gv ∈ Vϵ.

Let S = exp(Vϵ). We want to see that S is a slice at x. We have already proved that GxS = S. Now
we want to prove that if gS ∩ S ̸= ∅ then g ∈ Gx. Suppose that there exists v, w ∈ Vϵ and g ∈ G such
that g exp(x, v) = exp(x, w). Then exp((gx, dgxv)) = exp(x, w) and since exp is a diffeomorphism
we obtain that gx = x, which means that g ∈ Gx.
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Gy

G ×G x S

Finally, we would like to see ψ : G ×Gx Vϵ −→ GS ⊂ M such that ψ([g, v]) = g expx(v) is a G-
equivariant diffeomorphism. Like in the free case, ψ is a bijective smooth map. We want to construct
the same diffeomorphism as in the free case, but in this case we can only do it locally We consider
the principal bundle π : G −→ G/Gx with fiber Gx and a local cross section σ : U −→ G, where U
is an open neighbourhood of eGx. Therefore, we can define a diffeomorphism K : U × Vϵ −→ W,
where W is an open set of Nϵ, such that K(u, v) = (σ(u)x, dσ(u)|x(v)). Therefore, exp ◦K is a
diffeomorphism onto an open set in S. Finally, since exp(σ(u)x, dσ(u)|x(v)) = σ(u) exp(x, v), we
have that the map (u, s) −→ σ(u)s is a diffeomorphism from S × U to an open set of GS. In
particular, we have seen that ψ is a local diffeomorphism for any point of the from (e, v) ∈ G × Vϵ,
but since ψ is equivariant, we can conclude that ψ is a diffeomorphism. □

With the a similar proof, we have the following generalization:

Theorem 2.15. Let G be a compact Lie group acting on a smooth manifold M and let A be a G-invariant
submanifold. Then A has a G-invariant normal neighbourhood.

With the smooth version of the slice theorem we can also prove the continuous version of the
theorem, by using some extra tools which we present now:

Theorem 2.16. (see [2, 0.5.2.]) Let G be a compact Lie group and H a closed subgroup. Then there exists a
representation ρ : G −→ O(m), for some m, and a point v ∈ Rm such that Gv = H.

Theorem 2.17. (Tietze-Gleason lemma, [2, I.2.3.]) Let G be a compact group acting on a completely regular
space X and let A be a compact invariant subspace. Let ρ : G −→ GL(n, R) be a representation of G
and let f : A −→ Rn be ρ-equivariant ( f (ga) = ρ(g) f (a)). Then there exists an equivariant extension
f̃ : X −→ Rn of f .

Proof. Because of the Tietze extension theorem, there exists a continuous map f ′ : X −→ Rn

extending f . We define f̃ by averaging f ′ with a normalized Haar integral on G. We define
11



f̃ (x) =
∫

ρ(g−1) f ′(gx)dµ(g). For all h ∈ G, we have that f̃ (hx) =
∫

ρ(h(gh)−1) f ′(ghx)dµ(g) =∫
ρ(h)ρ((gh)−1) f ′(ghx)dµ(g) = ρ(h)

∫
ρ(k−1) f ′(kx)dµ(k) = ρ(h) f̃ (x), and hence f̃ is equivari-

ant. □

Now we can prove the continuous version of the slice theorem. Let x ∈ X and suppose that
the orbit Gx and isotropy H. By theorem 2.16, there exists and orthogonal action of G on some
Rm and v ∈ Rm such that Gv ∼= G/H. Since the action of G on Rm is linear (and therefore
smooth), there exists a slice V for v and a tube G ×H S −→ Rm. Now we define the continuous
map f : Gx −→ Rn such that f (gx) = gv.Since Gx is compact and invariant, we can use theorem
2.17 to find an equivariant extension f̃ : X −→ Rm. We consider T = f̃−1(GV) is a tube about
Gx and S = f̃−1(V) is the desired slice, since GT = T is an open neighbourhood of T we have an

equivariant retraction T
f̃−→ GS −→ G(v)

f−1

−−→ G(x).

Remark 2.18. We have seen that if X is a completely regular topological space and G is a compact Lie group
acting on X, then there exists a tube about each orbit. Moreover, this tube can be chosen to be of the form
G ×Gx V −→ M, where V is a vector space and H acts linearly on V. This type of action are called locally
smooth actions.

The slice theorem has far-reaching consequences. As a first corollary, we have the next structure
results:

Theorem 2.19. Suppose that X is a completely regular space with an action of a compact Lie group G and
that all orbits have type G/H. Then the orbit map π : X −→ X/G is a fiber bundle with fiber G/H and
structural group N(H)/H acting by right translations on G/H.

As another example, we proof the fact that if G is a compact Lie group acting on M, then there
exists a maximal isotropy type (H) and M(H) is open and dense on M. We will denote by x∗ the
orbit of x in M∗ = M/G to make the notation more concise.

We prove the fact by induction on the dimension of M. We start by proving it a local version
for a tube. Let G ×H V be a linear tube about Gx. By construction, we can assume that H acts
orthogonally on the unit sphere S ⊂ V. Now dim S < dim M and the action of H on S is locally
smooth, thus by the induction hypothesis there exists K ≤ H such that S(K) is open and dense.
By seeing V \ {0} as an open cone R+ · S, we have that V(K) is open and dense in V and all other
orbits have isotropy type bigger or equal than (K). Since two conjugated subgroups of H are also
conjugate in G, we have that (G ×H V)(K) = G ×H (V(K)).

Therefore we have found an open neighbourhood U∗
x of x∗ and a connected open dense subset W∗

x

of U∗
x such that all orbits in W∗

x have the same type and all orbits in U∗
x \ W∗

x are of strictly smaller
type.

Let C(H) denote the closure of M∗
(H), then x∗ ∈ C(H) if and only if the orbits in W∗

x have type G/H..
In this case, we have that U∗

x ⊂ C(H) and C(H) is open and closed. Then, there exists H (now fixed)
such that C(H) = M∗. Since M∗

(H) ∩ U∗
x = W∗

x we have that M∗
(H) is open dense and connected in

M∗. Also all other orbits are of type strictly less than G/H.
12



3. The toral rank conjecture

Since the theory of transformation groups want to study the symmetry of topological spaces and
manifolds, we would like to find a way to quantify how symmetric these spaces are. The toral rank
is one of such ways, however we start by defining the degree of symmetry.

Definition 3.1. Let X be a Hausdorff topological space, then the degree of symmetry of X is

N(X) = max{dim(G) : compact Lie group G acting effectively on X}.

We have the next result if we restrict the problem to smooth manifolds:

Proposition 3.2. Let M be a connected smooth manifold of dimension n, then N(M) ≤ n(n+1)
2 .

Proof. We proof it by induction on the dimension of Mn. When n = 0, we have that the trivial group
acts effectively yon M, since M is a point. Assume now that G is a connected compact Lie group
acting on M and consider a principal orbit G/H, then dim G − dim H = dim(G/H) ≤ dim M = n.
In consequence, dim G ≤ n+dim H. If we find a manifold of dimension less than n with an effective
action of H we are done.

Note that without loss of generality, we may assume that H is connected. The action of G on G/H
induced by the action of G on M is effective, therefore H acts effectively on G/H. Therefore, we
have a principal orbit H/K of the action H on G/H. If dim H/K < dim G/H ≤ n we are done. If
dim G/H = dim H/K then G/H = H/K, which means that there exists a transitive action with a
fixed point on G/H. This implies that G/H is a point and G is the trivial group. In this case, we
trivially have that dim G ≤ n(n+1)

2 . □

If we pick M = Sn then SO(n + 1), which has dimension n(n+1)
2 , acts effectively on Sn, thus the

bound cannot be improved in general. Conversely, if a compact Lie group of dimension n(n+1)
2

acts smoothly (and thus by isometries after fixing a Riemannian metric) on a smooth manifold of
dimension M, then M is diffeomorphic to Sn or RPn (this is a classical result by Frobenius and
Birkhoff). Note that the it is important to distinguish between topological and smooth actions. We
can define Ns(M) to be the smooth degree of symmetry of a smooth manifold M. If Σn is an
exotic sphere of dimension n ≥ 40, then Hsiang showed that Ns(Σn) ≤ 1

8 n2 + 1, however Σn is
homeomorphic to Sn, which implies that N(Σn) = n(n+1)

2 .

It is important to note that N(M1 × M2) ̸= N(M1) + N(M2), but we have for example a result by
Ku, Mann, Sicks and Su that Ns(M1 × M2) ≤ n1(n1+1)

2 + n2(n2+1)
2 and the equality only happens if

we have a product of spheres or real projective spaces.

However, most of the manifolds have few symmetries, there are manifolds which have N(M) = 0.
For example, any closed surface S other than S2, T2, RP2 or the Klein bottle K fulfils that N(S) = 0.
Another important results by Atiyah and Hizerbruch says that a spin manifold M of dimension 4n
with Â(M) ̸= 0 has Ns(M) = 0. Another statement due to Montgomery and Conner says that if
M is a K(π, 1) with χ(M) ̸= 0 then N(M) = 0. We can say even more, there exists asymmetric
manifolds, which means that they do not admit any effective group action of a compact group, even
finite groups. For example Waldmüller constructed a flat manifold (Rn/Γ with Γ ⊂ E(n)) with
n = 141 which is asymmetric (see [7, 10] and the references therein for these results).
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Since every compact Lie group has a maximal torus subgroup, every space which admits an effective
action of a compact Lie group also has an effective action of a torus. Thus we can define:

Definition 3.3. Let X be a Hausdorff topological space, then the abelian degree of symmetry of X is

Na(X) = max{r : Tr acts effectively on X}.

Like in the preceding case, we have the next result for topological manifolds:

Proposition 3.4. Let M be a topological manifold of dimension n, then Na(M) ≤ n and Na(M) = n if and
only if M is homeomorphic to Tn.

Proof. Assume that M admits an effective action of Tr for some r. Then for every non trivial sub-
group K of Tr, the set of fixed points MK is closed and has empty interior. Since manifolds are Baire
spaces, we have that M \ ⋂

{e}̸=K≤Tr Mk ̸= ∅. Therefore, there exists x ∈ M with trivial isotropy
group. Therefore the map f : Tr −→ M such that f (t) = tx is continuous and injective, which
implies that r ≤ dim M. If r = dim M, then the map f (T) is open. Since f (T) is also closed and M
is connected we have that M = f (T). Since f is continuous, injective and open, we have that f is a
homeomorphism between M and Tr. □

Note that the proposition shows that if the abelian degree of symmetry is high enough, we can
determine properties of the manifold (and even the manifold itself!). The toral rank conjecture
asserts a similar statement. If the toral rank of a space X is big, then the cohomology of X will be
also big. Firstly, we need to define the toral rank of X.

Definition 3.5. Let X be a Hausdorff topological space, then the toral rank of X is

rank(X) = max{r : Tr acts almost-freely on X}.

Note that rank(X) ≤ Na(X) and in general we will have an strict inequality. This can be illustrated
with the next proposition (see [3, Theorem 7.8] for a proof):

Proposition 3.6. Assume that M is a compact manifold which admits an almost free action of a compact Lie
group G, then χ(M) = 0.

In particular, let M = S2 which has χ(S2) = 2, by the above proposition we have that rank(S2) = 0
but Na(S2) = 1 since S1 acts effectively on S2 by a rotation around an axis (and Na(S2) ̸= 2 since S2

is not homeomorphic to S2). On the other hand, we have that Na(Tn) = rank(Tn) = n.

In general, if M is a closed aspherical (or more in general admissible) manifold, we have that
rank(M) = Na(M) ≤ dimZ(π1(M)). This is a consequence of the fact that effective toral actions
on admissible manifolds are injective (which means that if Tr acts effectively on M, the group
morphism ev# : π1(Tr, e) −→ π1(M, x) is injective for all x ∈ X, where ev(a) = ax for all a ∈ Tr).
Clearly all injective toral actions are almost-free, since the map ev# factors through π1(Tr) −→
π1(Tr/Tr

x).

On the other, not all almost-free actions are injective. For example, S1 acts freely on S3 (which
induces the Hopf fibration), but ev# is the trivial map since S3 is simply connected. Generally, if
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M is a simply connected closed manifold of dimension n ≥ 3, we have that Na(M) ≤ n − 2 and
rank(M) < n − 2 for n ≥ 5 (see [6]).

Let dim H∗(X, Q) = ∑i≥0 dim Hi(X, Q), then:

Conjecture 3.7. (Toral rank conjecture) Let X be a compact Hausdorff topological space, then dim H∗(X, Q) ≥
2rank(X).

We refer to [3, 9] for an introduction to the conjecture.

The original statement of the conjecture was due to S. Halperin and asked if dim H∗(X, Q) ≥ 2rank(X)

for a simply connected reasonable space, defining reasonable as a technical condition in order to use
rational homotopy theory and some results of topological transformation groups. Spaces like finite
CW-complexes and compact manifolds fulfils the condition of being reasonable.

Note that the almost-free condition is essential, so we cannot replace rank(X) with Na(X). Indeed,
U(n) acts effectively on S2n−1 ⊂ Cn, which implies that Tn = U(1)n ⊂ U(n) also acts effectively on
S2n+1. On the other hand dim H∗(S2n−1) = 2 < 2n for n > 1.

The conjecture can be reformulated by saying that rank(X) ≤ log2(dim H∗(X, Q)) for any compact
Hausdorff topological space. Note that 2rank(X) = dim H∗(Trank(X), Q). In consequence, if the action
of Tr on X is free and we have the principal bundle π : X −→ X/Tr, then the toral rank conjecture
predicts that dim H∗(X) ≥ dim H∗(Tr). This is true for example when the principal bundle is
trivial, since we would have that dim H∗(X) = 2r dim H∗(X/G) ≥ 2r. However, the conjecture does
not tells us that dim Hi(X) ≥ dim Hi(Tr) for all i ≥ 0. Indeed, this is not true in general, as the case
of S1 acting freely on S3 shows.

However, we have the following affirmative (and stronger) result in some particular cases. An action
of Tr on X is called homologically injective if the map ev∗ : Zr −→ H1(X, Z) is injective. Note that
a homologically injective action is injective and thus almost free. Then:

Theorem 3.8. Let M be a closed manifold which admits a homologically injective action of Tr, then dim Hi(Tr, Q) ≤
dim Hi(M, Q) for all i.

Every effective action of a torus on a compact flat manifold M is homologically injective (and
there exists an effective action of Tr, where r = rankZ(π1(M))) = rank(M)). In conclusion, the
conjecture is true for compact flat manifolds.

The toral rank conjecture can be generalized to finite group actions. Let p be a prime number, then
a p-torus of rank r is the group (Zp)r (which it is also called elementary abelian p-group). We can
define analogously the free p-rank of X to be

rankp(X) = max{r : (Zp)
r acts freely on X}.

Conjecture 3.9. (Halperin-Carlsson conjecture) Let X be a paracompact finite dimensional space, then
dim H∗(X, Fp) ≥ 2rankp(X) and dim H∗(X, Q) ≥ 2rank(X).

15



References

[1] A. Borel, Seminar on Transformation Groups.(AM-46), Volume 46. Princeton University Press, 2016.
[2] G.E Bredon, Introduction to compact transformation groups, Academic press, 1972.
[3] Y. Félix, J. Oprea, and D. Tanré, Algebraic models in geometry, OUP Oxford, 2008.
[4] V. Guillemin et al. Moment maps, cobordisms, and Hamiltonian group actions, No. 98. American Mathematical Soc., 2002.
[5] K. Kawakubo, The theory of transformation groups, Oxford University Press, 1991.
[6] S.K. Kim, D. McGavran, J. Pak. Torus group actions on simply connected manifolds, Pacific journal of mathematics 53.2,

435-444, 1974.
[7] H.T. Ku, L.N. Mann, J.L. Sicks J.C Su, Degree of symmetry of closed manifolds, Proceedings of the Second Conference

on Compact Transformation Groups. Springer, Berlin, Heidelberg, 1972
[8] K.B. Lee, F. Raymond, Seifert fiberings, No. 166, American Mathematical Soc., 2010.
[9] V. Muñoz, Toral rank conjecture, preprint.

[10] V. Puppe, Do manifolds have little symmetry?, Journal of Fixed Point Theory and Applications, 2(1), 85-96, 2007.

16


