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Motivation - Finding the shape

Take some topological space.
Select a parameter and perform a filtration.
At each step, count its topological features.
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Motivation - Finding the shape

Take some topological space.
Select a parameter and perform a filtration.
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Motivation - Finding the shape

Take some topological space.
Select a parameter and perform a filtration.
At each step, count its topological features.
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Motivation - Shape summary

There are many ways of summarize the information obtained through a
filtration.

Vectorized / graphical summaries

(a) Persistence barcodes (b) Persistence diagrams (c) Persistence landscapes

Given one vectorized representation, can we recover the original space?
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Mathematical formalization

Let M be a finite geometric simplicial complex in Euclidean space Rd with
d ≥ 2.

Definition
The persistent homology transform is a function

Sd−1 → Dgm

that associates to each v the persistence diagram of H∗(Mt(v);R), where
Mt(v) = {x ∈ M | x · v ≤ t},

The PHT is continuous with respect to any Wasserstein distance on
the set of persistence diagrams.
Some theory has been developed to study its differenciability.



Previous work

In 2013, it was proved that the PHT is injective for d = 2 and d = 3.
In 2018, the result was extended over all dimensions.

Takeaway

Finite simplicial complexes embedded in Rd are uniquely determined by the
collection of persistence diagrams of sublevel sets in all possible directions.

However, we need to produce efficient algorithms that use a small number
of directions in order to reconstruct.

In the case of graphs, three directions suffice.
Bounds on the number of directions needed for reconstruction of
compact definable sets in Rd can be found.



Current work

Given f : [a, b] → R continuous piecewise linear, with finitely many
vertices, the graph

G (f ) = {(x , y) ∈ R2 | y = f (x)}

is as a finite geometric simplicial complex of dimension 1.
We give an algorithm that recovers f in polynomial time requiring
three admissible directions.
We also present an algorithm that locates the local maxima and
minima of a smooth function f : [a, b] → R, assuming that the second
derivative does not vanish at critical points, using five admissible
directions.

But why this?
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Persistence Homology and Machine Learning

Persistence Landscapes were introduced in 2015 and built a bridge
between topological features and statistics. Such relation gave rise to
Topological Data Analysis.
The interest towards finding new and reliable Machine Learning
algorithms has grown considerably, specially in the field of
importance attribution.

Since Topological Data Analysis is able to capture the shape of the data,
we propose a pipeline to extract important information of input data
functions.

Input Persistence Landscapes

Neural
Network



Topological Data Analysis and Machine Learning

We start with a problem.

Question
Given graph of a function that represents a heartbeat, how can we know
which kind of arrhythmia it has?

We obtain a dataset of functions that represent heartbeats with
different arrhythmia.
We preprocess each of the examples and we obtain its persistence
landscape representation.
We train a neural network so it can make a classification. At the same
time, the neural network will decide which levels of landscapes are
important.
We reconstruct an approximation of the function using only the most
important landscapes, it is the shape that the network regards as
important.



Topological Data Analysis works

We performed several experiments.
First, we trained the neural network with 10 different levels of
landscapes.
We made the neural network choose which were important.
We then retrain another neural network using only the most significant
levels of landscapes and another using the least significant levels.
We make sure that our technique works.

Accuracy Training Accuracy Test
Original 0.982 0.984

All landscapes 0.957 0.946
Most significant 0.958 0.946
Least significant 0.833 0.832

The accuracy is the percentage of properly classified samples.



Machine Learning and reconstruction

Now it is time to see what the neural network is regarding as important,
time to reconstruct.

Ok but, what else?
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Definitions

Let S1 be the unit circle, view each v ∈ S1 as a complex number e iθ.
The sublevel set of G (f ) in the direction v = e iθ at height t is

G (f )t(v) = {(x , f (x)) ∈ R2 | x cos θ + f (x) sin θ ≤ t}.

The directional persistence module of f at height t in the direction v is

Mt(f , v) = H0(G (f )t(v);R)

v

x cos θ + y sin θ = t

y = x tan θ

t
X

Xt (v)

θ



Definitions

Critical lines
A critical line at a height t for a direction v is a line in R2 orthogonal to v
such that the filtered space G (f )(v) changes its number of connected
components at height t.

Lines passing through the boundary points may not be critical lines.
Piecewise linear case: each critical line in any direction contains at
least one critical point of f .
Smooth case: critical lines are tangent to the graph of f (hopefully,
close to a critical point).



Definitions

Proposition
For a direction v , a line orthogonal to v at a height t is critical for a
function f if and only if either t = β for some point (β, δ) in the
persistence diagram for zero-homology H0 of sublevel sets of f in the
direction v , or t = δ when δ is finite.

We will always work with persistence diagrams.
With a simple computation, we can get all the critical lines.
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Piecewise linear case - definition

Let f be a piecewise linear continuous function with n critical points.
The number of critical lines in each direction is less or equal than n.
A line passing through a critical point can fail to be critical and a
critical line can pass through two or more critical points.

Admissible direction
A direction is admissible if for each critical point of f there is a
neighbourhood where the graph fully lies at one side of a line orthogonal to
the direction going through the critical point.



Piecewise linear case - Theorem

Theorem
Let f be a continuous piecewise linear function, and let v0, v1, v2 be
admissible directions.
Let P be the set of triple intersection points determined by the three
directional persistence diagrams. Suppose that no critical line orthogonal
to v0, v1 or v2 contains two or more points from P.

Then P is equal to the set of critical points of f , excluding the
boundary points if these are local maxima.

By joining each pair of consecutive triple intersection points we obtain
a piecewise linear approximation with the same critical points as f .
The subset of S1 of those directions for which there are critical lines
passing through two or more triple points has measure zero.



The rolling ball algorithm

Fix three directions, normally θ0 = 90◦, θ1 = 85◦ and θ2 = 80◦.
Look for triple intersections within the set of critical lines
determined by the three directional persistence diagrams.

T S R

Ti

Si

Ri

A naive algorithm would take O(n3)
where n is the number of critical
points of the original function.

The rolling ball algorithm makes at
most 2n log n+ 2n2 operations, hence

it takes O(n2)!



The rolling ball algorithm

For a line Si , consider the intersections

pt = Si ∩ T0, pr = Si ∩ R0.

If pt = pr we have found a triple intersection and we move to the next
Si+1.
Otherwise, compare the x-values of the intersections and discard the
line with a lower x value.

T0

T1
T2

Si

R2
R1
R0

(a) x(pt) < x(pr )

T0

T1
T2

Si

R2
R1
R0

(b) x(pr ) < x(pt)
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The rolling ball algorithm
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The smooth case

In the smooth case, we cannot have critical lines of different directions
be tangent to the same critical point, so the problem becomes a bit
more involved.
The closest thing to a triple intersection that we can do with three
different lines is a triangle. So now we look for suitable triangles.
But once we have a triangle, we have to produce a good
approximation of the actual critical point.

We will treat detection and convergence separately.

Now, directions are not completely independent from each other.
The vertical direction will yield the y-coordinates of the critical
points.
Each time we choose a direction, we will also look at its symmetric
direction with respect to the vertical line.



The smooth case - detection

Detection
Let (x0, y0) be a critical point of f : [a, b] → R. For a direction v = e iθ and
a positive real number τ > 0, we say that (x0, y0) is τ -detected by the
direction v if there are critical lines of slopes ±1/ tan θ intersecting y = y0
at points (x1, y0) and (x2, y0) with

x0 is between x1 and x2.
x1 and x2 are at distance less than τ .
There is no other critical point with x-coordinate between x1 and x2.

x0x1 x2



The smooth case - convergence

Let (x0, y0) be a local minimum, detected by v1 = e iθ1 .

If m1 = 1/ tan θ1, consider lines L1 and L2 with slopes −m1 and m1.

Let L0 the horizontal critical line y = y0.

Choose another direction v2 = e iθ2 with 0 < θ1 < θ2 < π/2.

If m2 = 1/ tan θ2, consider lines L3 and L4 with slopes −m2 and m2

Let (xi , y0) denote the intersection point of Li with L0 for i = 1, 2, 3, 4.

x1 x2x3 x4

P

Q

M

M∗

L1

L2

L3

L4

L0

Then x∗ is taken as an approximation of x0,
where

x∗ =
m2(x1 + x2)(x3 − x4) − m1(x1 − x2)(x3 + x4)

2m2(x3 − x4) − 2m1(x1 − x2)



The smooth case - convergence

Theorem
Let f : [a, b] → R be a smooth function, and let (x0, y0) be a critical point
of f with a < x0 < b and such that f ′′(x0) ̸= 0. Then x0 can be
approximated with any arbitrary degree of precision by means of critical
lines.

x1 x2x3 x4

P

Q
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The five line algorithm

The algorithm works in the following way

Detect. We start with a predefined value of τ and a direction
v = e iθ1 that we assume admissible.

All triangles with base less than τ formed by critical lines are
tentatively assumed to contain a critical point

Clean and converge. We try to eliminate false positives and
accurately locate true positives.

The working hypothesis is that critical lines with slope close to 0 will
only pass inside a triangle from the first step if that triangle truly
contains a critical point.
So, we pick another direction v = e iθ2 that will produce a slope of
critical lines close to 0. We test if a pair of such critical lines lies inside
a triangle of the first step. We disregard candidate triangles where
betweenness fails.



The five line algorithm

The choice of parameters depends on the signal functions to which the
algorithm is to be applied, and they are unknown to the algorithm.

The choice of τ is crucial.

Bigger values of τ ensure that no critical point is missed, but the
chances of false positives increase.

Smaller values of τ may miss some critical points but also reduce the
number of candidate triangles, thus diminishing the possibility of a
false positive.



The five line algorithm

The choice of parameters depends on the signal functions to which the
algorithm is to be applied, and they are unknown to the algorithm.

The algorithm can fail due to the existence of lines that are tangent at
a critical point and very close to being tangent at another critical
point of the graph, called quasi-multiple tangent lines.

Triangles formed with quasi-multiple tangent lines usually appear next
to triangles that truly contain a critical point.

The same pair of critical lines with small slope appears between both
triangles, resulting in closeby duplicate images of the same critical
point.

The algorithm eliminates the duplicates.



The five line algorithm



The five line algorithm



The five line algorithm



Thank you for your attention!
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