

Totally invaluent partition of C:
• Eatou set
$$F(C)$$

• $2 \in F(C)$ as $3 f^{m_{1}}_{m}$ morrisol in a mill of 2
are $3 f^{m_{1}}_{m}$ equitientimizes in a mill of 2
Areal
Total : if we take a print in the Forou set,
if we before similarly as prints nearly.
• $3 = 0 \text{ print}$
• $4 \text{ use before similarly as prints nearly.
• $3 = 0 \text{ print}$
• $4 \text{ use before similarly as prints nearly.
• $3 = 0 \text{ print}$
• $4 \text{ use before similarly as prints nearly.
• $4 \text{ use of } J(C) := C - F(C)$
• $6 \text{ chartic dynamics}$
• $4 \text{ for } (U) = 4 \text{ dynamics}$
• $4 \text{ dynami$$$$

4.- Dynamics in the Julia set
$$f: J(f) \rightarrow J(f)$$

$$(Hass : \exists z \in J(f) st. \exists f^{m}(z)]_{n} = J(f) \quad (its orbit is denve in J(f))$$

$$: periodic points are denve
: f_{1,J(f)} is topologically transitive, it. cannot be decomposed in smaller
dynamical systems
complicated : twink of a dynamics and it will (in contrast to FC on F(f))
be somewhere radised
For word partition of $J(f)$: boundaries of FC \rightarrow U invaluent FC
 $f: \partial U \rightarrow \partial U$
: small
: use the logingacy is ID (as lefter)
 $f = \partial U \rightarrow \partial U$
: small
: use the logingacy is ID (as lefter)
 $f = \frac{1}{2} U - \frac{1}{2} U$
 $f = \frac{1}{2} U - \frac$$$

THM	(Fagella, J.) U invariant FC, unbounded
•	U fiegel disk => no periodic points in 2U
	other vise, (+ technical condition on SV)
) periodic points in 20 are dense in 20 escaping

٠

TOOLS

· previous conjugary

+

g intrational rotation => no pulicatic points in 21D Otherwise, periodic points are dense in 21D (Bargmann)

//

+

better estimates on Y*