An introduction to Khovanov homology and annular links

Sergio García Rodrigo

Joint work with Federico Cantero and Marithania Silvero Universidad Autónoma de Madrid

SIMBA

March 15, 2023

Contents

(1) Introduction

(2) Jones polynomial
(3) Khovanov homology

4 Khovanov spectrum

Contents

(1) Introduction

(2) Jones polynomial
(3) Khovanov homology
4. Khovanov spectrum

Definition

A knot K is a subset of \mathbb{R}^{3} homeomorphic to a circumference S^{1}. A link L is a finite disjoint union of knots $L=K_{1} \cup K_{2} \cup \cdots \cup K_{n}$.

Definition

A knot K is a subset of \mathbb{R}^{3} homeomorphic to a circumference S^{1}. A link L is a finite disjoint union of knots $L=K_{1} \cup K_{2} \cup \cdots \cup K_{n}$.

Definition

An annular knot K is a subset of the thickened annulus $\mathbb{A} \times I$ homeomorphic to a circumference S^{1}.
An annular link L is a finite disjoint union of annular knots $L=K_{1} \cup K_{2} \cup \cdots \cup K_{n}$.

Definition

An annular knot K is a subset of the thickened annulus $\mathbb{A} \times I$ homeomorphic to a circumference S^{1}.
An annular link L is a finite disjoint union of annular knots $L=K_{1} \cup K_{2} \cup \cdots \cup K_{n}$.

Definition

Two links L_{1} y L_{2} are equivalent if there exists an ambient isotopy $F: \mathbb{R}^{3} \times[0,1] \longrightarrow \mathbb{R}^{3}$ such that $F\left(L_{1}, 0\right)=L_{1}$ and $F\left(L_{1}, 1\right)=L_{2}$.

Two diagrams are equivalent if they represent equivalent links.

Definition

Two links L_{1} y L_{2} are equivalent if there exists an ambient isotopy $F: \mathbb{R}^{3} \times[0,1] \longrightarrow \mathbb{R}^{3}$ such that $F\left(L_{1}, 0\right)=L_{1}$ and $F\left(L_{1}, 1\right)=L_{2}$.

Two diagrams are equivalent if they represent equivalent links.
Definition
A link invariant is a function from the set of (annular) links whose value depends only on the equivalence class of the link.

Theorem (Reidemeister, 1927)

Two diagrams D and D^{\prime} represent equivalent links if and only if there is a finite sequence of Reidemeister moves that transform D into D^{\prime}.

Theorem (Reidemeister, 1927)

Two diagrams D and D^{\prime} represent equivalent links if and only if there is a finite sequence of Reidemeister moves that transform D into D^{\prime}.

Theorem (Hoste and Przytycki, 1989)

Two annular diagrams D and D^{\prime} represent equivalent annular links if and only if there is a finite sequence of annular Reidemeister moves that transform D into D^{\prime}.

Theorem (Hoste and Przytycki, 1989)

Two annular diagrams D and D^{\prime} represent equivalent annular links if and only if there is a finite sequence of annular Reidemeister moves that transform D into D^{\prime}.

We can orientate a link choosing an orientation for each component.

Given an oriented diagram D, we call writhe of D to the number of positive crossing p minus the number of negative crossings n of D, $w(D)=p-n$.

Contents

(1) Introduction

(2) Jones polynomial

(3) Khovanov homology
4. Khovanov spectrum

Definition

Let D be a non-oriented diagram. We define the Kauffman bracket of D as the polynomial $\langle D\rangle \in \mathbb{Z}\left[A^{ \pm 1}\right]$ that satisfies the following axioms:
(1) $\langle\bigcirc\rangle=1$,
(2) $\langle D \sqcup \bigcirc\rangle=\left(-A^{2}-A^{-2}\right)\langle D\rangle$,
(3 $\langle\lambda\rangle=A\langle\succsim\rangle+A^{-1}\langle)(\rangle$.

Definition

Let D be a non-oriented diagram. We define the Kauffman bracket of D as the polynomial $\langle D\rangle \in \mathbb{Z}\left[A^{ \pm 1}\right]$ that satisfies the following axioms:
(1) $\langle\bigcirc\rangle=1$,
(2) $\langle D \sqcup \bigcirc\rangle=\left(-A^{2}-A^{-2}\right)\langle D\rangle$,
(3) $\langle\lambda\rangle=A\langle\swarrow\rangle+A^{-1}\langle)(\rangle$.

Definition

Let D be an oriented diagram of a link L. We define the Jones polynomial of D as

$$
V(D)=(-A)^{-3 w(D)}\langle D\rangle
$$

It is a link invariant.

Definition

Let D be an annular diagram. We define the annular Kauffman bracket of D as the polynomial $\langle D\rangle_{\mathbb{A}} \in \mathbb{Z}\left[A^{ \pm 1}, h\right]$ that satisfies the following axioms:
(1) $\langle\cdot \bigcirc\rangle_{\mathbb{A}}=1$,
(2) $\langle\odot\rangle_{\mathbb{A}}=h$,
(3) $\langle\backslash\rangle_{\mathbb{A}}=A\langle\leftrightharpoons\rangle_{\mathbb{A}}+A^{-1}\langle)(\rangle_{\mathbb{A}}$,
(9) $\langle\cdot \bigcirc \sqcup D\rangle_{\mathbb{A}}=\left(-A^{2}-A^{-2}\right)\langle\cdot D\rangle_{\mathbb{A}}$,
(5) $\langle\odot \sqcup D\rangle_{\mathbb{A}}=\left(-A^{2}-A^{-2}\right) h\langle\cdot D\rangle_{\mathbb{A}}$.

Definition (Hoste and Przytycki)

Let D be an annular diagram of an oriented annular link L. We define the annular Jones polynomial of D as

$$
V_{\mathbb{A}}(D)=(-A)^{-3 w(D)}\langle D\rangle_{\mathbb{A}} .
$$

It is an annular link invariant.
If L is an annular link contained in a 3-ball in $\mathbb{A} \times I$, then $V_{\mathbb{A}}(L)=V(L)$.

Definition

Let D be a diagram of a link L. We define the bracket polynomial D as the polynomial $\langle D\rangle \in \mathbb{Z}\left[q^{ \pm 1}\right]$ that satisfies the following axioms:
(1) $\langle\rangle\rangle=1$,
(2) $\left\langle\langle D \sqcup \bigcirc\rangle=\left(q+q^{-1}\right)\langle\langle D\rangle\right.$,
(3) $\langle\langle\lambda\rangle=\langle\langle\succsim\rangle-q\langle\ll)(\rangle$.

Definition

Let D be a diagram of a link L, p and n the number of positive and negative crossings, respectively, of D. We define the normalized Jones polynomial (in the varaible q) of L as

$$
J(L)=(-1)^{n} q^{p-2 n}\langle\langle D\rangle .
$$

Definition

Given a diagram D, a Kauffman state s of D is an assignment of a label $0 \circ 1$ to each crossing of the diagram.

A 0 -smoothing and a 1-smoothing is the result of swapping a crossing \backslash for \gtrsim and) (, respectively.

Figure: Kauffman state 010 of the trefoil knot.

A Kauffman state of an annular diagram has two types of circles: Trivial circles, that bound a disk in the punctured plane.
Essential circles, that do not bound a disk in the punctured plane.

$$
J(L)=(-1)^{n} q^{p-2 n} \sum_{s}(-q)^{r}\left(q+q^{-1}\right)^{k-1},
$$

where r is the height or number of 1 -smoothings of s, k is the number of circles in s, p is the number of positive crossings, n is the number of negative crossings.

$$
J(L)=(-1)^{n} q^{p-2 n} \sum_{s}(-q)^{r}\left(q+q^{-1}\right)^{k-1} .
$$

Introduction Jones polynomial
Khovanov homology Khovanov spectrum

Contents

(1) Introduction

(2) Jones polynomial
(3) Khovanov homology
4. Khovanov spectrum

$$
\begin{aligned}
& V=\left\langle v_{+}, v_{-}\right\rangle \text {graded vector space, where } \operatorname{deg}\left(v_{+}\right)=1 \text { and } \\
& \operatorname{deg}\left(v_{-}\right)=-1 .
\end{aligned}
$$

$$
\begin{aligned}
& V=\left\langle v_{+}, v_{-}\right\rangle \text {graded vector space, where } \operatorname{deg}\left(v_{+}\right)=1 \text { and } \\
& \operatorname{deg}\left(v_{-}\right)=-1 . \\
& \qquad q \operatorname{dim} V=q+q^{-1} .
\end{aligned}
$$

$$
\begin{aligned}
& V=\left\langle v_{+}, v_{-}\right\rangle \text {graded vector space, where } \operatorname{deg}\left(v_{+}\right)=1 \text { and } \\
& \operatorname{deg}\left(v_{-}\right)=-1 . \\
& \qquad q \operatorname{dim} V=q+q^{-1} . \\
& V_{s}(D)=V^{\otimes k}\{r\}
\end{aligned}
$$

$$
\begin{aligned}
& V=\left\langle v_{+}, v_{-}\right\rangle \text {graded vector space, where } \operatorname{deg}\left(v_{+}\right)=1 \text { and } \\
& \operatorname{deg}\left(v_{-}\right)=-1 . \\
& \qquad q \operatorname{dim} V=q+q^{-1} . \\
& V_{s}(D)=V^{\otimes k}\{r\} \Longrightarrow q \operatorname{dim} V_{s}(D)=q^{r}\left(q+q^{-1}\right)^{k} .
\end{aligned}
$$

$$
\begin{aligned}
& V=\left\langle v_{+}, v_{-}\right\rangle \text {graded vector space, where } \operatorname{deg}\left(v_{+}\right)=1 \text { and } \\
& \operatorname{deg}\left(v_{-}\right)=-1 . \\
& \qquad q \operatorname{dim} V=q+q^{-1} . \\
& V_{s}(D)=V^{\otimes k}\{r\} \Longrightarrow q \operatorname{dim} V_{s}(D)=q^{r}\left(q+q^{-1}\right)^{k} . \\
& \ldots \longrightarrow[[D]]^{r} \xrightarrow{d^{r}}[[D]]^{r+1} \xrightarrow{d^{r+1}} \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
V=\left\langle v_{+}, v_{-}\right\rangle \text {graded vector space, where } \operatorname{deg}\left(v_{+}\right)=1 \text { and } \\
\operatorname{deg}\left(v_{-}\right)=-1 . \\
\qquad q \operatorname{dim} V=q+q^{-1} . \\
V_{s}(D)=V^{\otimes k}\{r\} \Longrightarrow q \operatorname{dim} V_{s}(D)=q^{r}\left(q+q^{-1}\right)^{k} . \\
\cdots \longrightarrow \llbracket D \rrbracket^{r} \xrightarrow{d^{r}} \llbracket[D]^{r+1} \xrightarrow{d^{r+1}} \cdots \\
\llbracket\left[D \rrbracket^{r}=\underset{s:|s|=r}{ } V_{s}(D) .\right.
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
V=\left\langle v_{+}, v_{-}\right\rangle \text {graded vector space, where } \operatorname{deg}\left(v_{+}\right)=1 \text { and } \\
\operatorname{deg}\left(v_{-}\right)=-1 . \\
\qquad q \operatorname{dim} V=q+q^{-1} . \\
V_{s}(D)=V^{\otimes k}\{r\} \Longrightarrow q \operatorname{dim} V_{s}(D)=q^{r}\left(q+q^{-1}\right)^{k} . \\
\ldots \longrightarrow\left[[D]^{r} \xrightarrow{d^{r}}[[D]]^{r+1} \xrightarrow{d^{r+1}} \ldots\right. \\
{[[D]]^{r}=\bigoplus_{s:|s|=r} V_{s}(D) .}
\end{array} .
\end{aligned}
$$

Khovanov complex:

$$
\mathcal{C}(D)=[[D]][-n]\{p-2 n\} .
$$

$V=\left\langle v_{+}, v_{-}\right\rangle$graded vector space, where $\operatorname{deg}\left(v_{+}\right)=1$ and $\operatorname{deg}\left(v_{-}\right)=-1$.

$$
q \operatorname{dim} V=q+q^{-1} .
$$

$$
V_{s}(D)=V^{\otimes k}\{r\} \Longrightarrow q \operatorname{dim} V_{s}(D)=q^{r}\left(q+q^{-1}\right)^{k}
$$

$$
\ldots \longrightarrow[[D]]^{r} \xrightarrow{d^{r}}[[D]]^{r+1} \xrightarrow{d^{r+1}} \ldots
$$

$$
[[D]]^{r}=\bigoplus_{s:|s|=r} V_{s}(D) .
$$

Khovanov complex:

$$
\begin{gathered}
\mathcal{C}(D)=[[D]][-n]\{p-2 n\} . \\
J(L)=(-1)^{n} q^{p-2 n} \sum_{s}(-q)^{r}\left(q+q^{-1}\right)^{k-1} .
\end{gathered}
$$

$$
\begin{aligned}
& \bigcirc \bigcirc \bigcirc \\
& m: \quad V \otimes V \longrightarrow V \\
& V_{+} \otimes V_{+} \longmapsto V_{+} \text {, } \\
& V_{+} \otimes V_{-} \longmapsto V_{-} \text {, } \\
& V_{-} \otimes V_{+} \longmapsto V_{-} \text {, } \\
& V_{-} \otimes V_{-} \longmapsto 0 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \bigcirc \bigcirc \longmapsto \bigcirc \\
& m: \quad V \otimes V \longrightarrow V \\
& V_{+} \otimes V_{+} \longmapsto V_{+} \text {, } \\
& V_{+} \otimes V_{-} \longmapsto V_{-} \text {, } \\
& V_{-} \otimes V_{+} \longmapsto \quad V_{-} \text {, } \\
& v_{-} \otimes v_{-} \longmapsto 0 \text {. } \\
& \begin{array}{l}
\bigcirc \longmapsto \bigcirc \bigcirc \\
V \longrightarrow V \otimes V
\end{array} \\
& v_{+} \longmapsto v_{+} \otimes v_{-}+v_{-} \otimes v_{+} \text {, } \\
& V_{-} \quad \longmapsto \quad V_{-} \otimes V_{-} \text {. }
\end{aligned}
$$

$\bigcirc \bigcirc \longmapsto \bigcirc$

$$
m: \quad V \otimes V \quad \longrightarrow
$$

$$
v_{+} \otimes v_{+} \quad \longmapsto \quad v_{+}
$$

$$
v_{+} \otimes v_{-} \longmapsto v_{-}
$$

$$
V_{-} \otimes v_{+} \quad \longmapsto \quad v_{-}
$$

$$
v_{-} \otimes v_{-} \quad \longmapsto 0
$$

$\Delta:$

$$
\begin{aligned}
O & \longmapsto O \\
V & \longmapsto V \otimes V \\
v_{+} & \longmapsto v_{+} \otimes v_{-}+v_{-} \otimes v_{+} \\
v_{-} & \longmapsto v_{-} \otimes v_{-}
\end{aligned}
$$

$$
d^{r}=\sum_{|\xi|=r}(-1)^{\xi} d_{\xi}
$$

Definition

Let D be a diagram of an oriented link L. We define the Khovanov homology, $\mathcal{H}(D)$, as the set of homology groups of $\mathcal{C}(D)$.

Definition

Let D be a diagram of an oriented link L. We define the Khovanov homology, $\mathcal{H}(D)$, as the set of homology groups of $\mathcal{C}(D)$.

Theorem (Khovanov, 2000)

The Khovanov homology $\mathcal{H}^{r}(D)$ is a link invariant.

Definition

Let D be a diagram of an oriented link L. We define the Khovanov homology, $\mathcal{H}(D)$, as the set of homology groups of $\mathcal{C}(D)$.

Theorem (Khovanov, 2000)

The Khovanov homology $\mathcal{H}^{r}(D)$ is a link invariant.
The graded Poincaré polynomial of $\mathcal{C}(D)$,

$$
\sum_{r} t^{r} \operatorname{dim} \mathcal{H}^{r}(D)
$$

is a link invariant that recovers the Jones polynomial:

$$
\tilde{J}(L)=\sum_{r}(-1)^{r} \operatorname{dim} \mathcal{H}^{r}(D) .
$$

	i	-3	-2	-1
j				
-1				\mathbb{Z}
-3				\mathbb{Z}
-5		\mathbb{Z}		
-7		\mathbb{Z}_{2}		
-9	\mathbb{Z}			

$\sum_{r} t^{r} \operatorname{dim} \mathcal{H}^{r}(\oint)=t^{-3} q^{-9}+t^{-2} q^{-5}+q^{-3}+q^{-1}$.

$$
J(\circlearrowleft)=\frac{-q^{-9}+q^{-5}+q^{-3}+q^{-1}}{q+q^{-1}}=-q^{-8}+q^{-6}+q^{-2}
$$

Khovanov homology is a sharper invariant than Jones polynomial:

$$
J\left(5_{1}\right)=J\left(10_{132}\right)=-q^{-7}+q^{-6}-q^{-5}+q^{-4}+q^{-2} .
$$

Figure: Diagram of 5_{1}.

Figure: Diagram of 10_{132}.

Khovanov homology is a sharper invariant than Jones polynomial:

$$
J\left(5_{1}\right)=J\left(10_{132}\right)=-q^{-7}+q^{-6}-q^{-5}+q^{-4}+q^{-2} .
$$

$$
\mathcal{H}^{i, j}\left(5_{1}\right)
$$

$\mathcal{H}^{i, j}\left(1_{132}\right)$

	i	-7	-6	-5	-4	-3	-2	-1	0
-1							\mathbb{Z}	\mathbb{Z}	
-3								\mathbb{Z}	
-5					\mathbb{Z}	\mathbb{Z}^{2}			
-7				\mathbb{Z}					
-9				\mathbb{Z}	\mathbb{Z}				
-11		\mathbb{Z}	\mathbb{Z}						
-13									
-15	\mathbb{Z}								

Khovanov homology is not a complete invariant: it doesn't distinguish Kinoshita-Terasaka's knot and Conway's knot.

Theorem (Kronheimer and Mrowka, 2010) Khovanov homology detects the trivial knot.

Annular Khovanov homology

We construct the resolution cube.

$$
\begin{array}{cc}
\bigcirc \rightarrow V=\left\langle v_{+}, v_{-}\right\rangle . & \odot \rightarrow W=\left\langle w_{+}, w_{-}\right\rangle . \\
\operatorname{deg}_{q}\left(v_{+}\right)=1, \operatorname{deg}_{q}\left(v_{-}\right)=-1, & \operatorname{deg}_{q}\left(w_{+}\right)=0=\operatorname{deg}_{q}\left(w_{-}\right), \\
\operatorname{deg}_{h}\left(v_{+}\right)=0=\operatorname{deg}_{h}\left(v_{-}\right) . & \operatorname{deg}_{h}\left(w_{+}\right)=1, \operatorname{deg}_{h}\left(w_{-}\right)=-1 . \\
V_{s}(D)=V^{\otimes a} \otimes W^{\otimes b}\{r\}, \text { where } a=\# \bigcirc, b=\# \odot .
\end{array}
$$

Annular Khovanov homology

We construct the resolution cube.

$$
\begin{array}{cc}
\bigcirc \rightarrow V=\left\langle v_{+}, v_{-}\right\rangle . & \odot \rightarrow W=\left\langle w_{+}, w_{-}\right\rangle . \\
\operatorname{deg}_{q}\left(v_{+}\right)=1, \operatorname{deg}_{q}\left(v_{-}\right)=-1, & \operatorname{deg}_{q}\left(w_{+}\right)=0=\operatorname{deg}_{q}\left(w_{-}\right), \\
\operatorname{deg}_{h}\left(v_{+}\right)=0=\operatorname{deg}_{h}\left(v_{-}\right) . & \operatorname{deg}_{h}\left(w_{+}\right)=1, \operatorname{deg}_{h}\left(w_{-}\right)=-1 . \\
V_{s}(D)=V^{\otimes a} \otimes W^{\otimes b}\{r\}, & \text { where } a=\# \bigcirc, b=\# \odot . \\
\ldots \longrightarrow\left[[D] _ { \mathbb { A } } ^ { r } \xrightarrow { d ^ { r } } \left[[D]_{\mathbb{A}}^{r+1} \xrightarrow{d^{r+1}} \ldots\right.\right. \\
{[[D]]_{\mathbb{A}}^{r}=\bigoplus_{s:|s|=r} V_{s}(D)=\bigoplus_{s:|s|=r} V^{\otimes a} \otimes W^{\otimes b}\{r\} .}
\end{array}
$$

Annular Khovanov complex: $\mathcal{C}_{\mathbb{A}}(D)=\left[[D]_{\mathbb{A}}[-n]\{p-2 n\}\right.$.

We define maps m and Δ.

$(\bigcirc) \rightarrow$

We define maps m and Δ.

$(\bullet) \rightarrow \bullet$

$$
d^{r}=\sum_{|\xi|=r}(-1)^{\xi} d_{\xi}
$$

Definition

Let D be an annular diagram of an oriented link L. We define the annular Khovanov homology of $D, \mathcal{H}_{\mathbb{A}}(D)$, as the set of homology groups of the annular Khovanov complex $\mathcal{C}_{\mathbb{A}}(D)$.

If L is an annular link contained in a 3 -ball in $\mathbb{A} \times I$, then $\mathcal{C}_{\mathbb{A}}(D)=\mathcal{C}(D)$, hence $\mathcal{H}_{\mathbb{A}}(L)=\mathcal{H}(L)$.

Definition

Let D be an annular diagram of an oriented link L. We define the annular Khovanov homology of $D, \mathcal{H}_{\mathbb{A}}(D)$, as the set of homology groups of the annular Khovanov complex $\mathcal{C}_{\mathbb{A}}(D)$.

Theorem (Asaeda, Przytycki and Sikora, 2004)

The annular Khovanov homology $\mathcal{H}_{\mathbb{A}}^{r}(D)$ is an annular link invariant.

Annular Khovanov homology categorifies the annular Jones polynomial.

Definition

Given a link L in the solid torus \mathbb{T}, we define the wrapping number of L, wrap (L), as the minimal intersection of L with a meridional disk of \mathbb{T}.

Conjecture (Wrapping conjecture. Hoste and Przytycki, 1995)

Let L be an annular link. Then, the maximum annular degree of $V_{\mathbb{A}}(L)$ coincides with the wrapping numberof L. That is,

$$
\max ^{\operatorname{deg}_{h}} V_{\mathbb{A}}(L)=\operatorname{wrap}(L)
$$

Conjecture (Wrapping conjecture II)

Let L be an annular link. Then,

$$
\max \left\{k \mid \mathcal{H}^{* * k}(L) \text { not trivial }\right\}=\operatorname{wrap}(L)
$$

Contents

(1) Introduction

(2) Jones polynomial
(3) Khovanov homology
(4) Khovanov spectrum

Referencias

R．Akhmechet，V．Krushkal and M．Willis（2021）．Stable homotopy refinement of quantum annular homology， Compositio Math．157，710－769

囯 Bar－Natan D．（2002）．On Khovanov＇s categorification of the Jones polynomial．Algebr．Geom．Topol． 2 337－370．

囦 Cromwell P．R．（2004）．Knots and links．New York：Cambridge University Press．

R Hoste J．and Przytycki J．H．（1989）．An invariant of Dichromatic Links．Proceedings of the American Mathematical Society 105（4）1003－1003．

囲 Xie，Y．（2018）．Instantons and Annular Khovanov Homology．

Thank you!

