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De�nition

A knot K is a subset of R3 homeomorphic to a circumference S1.

A link L is a �nite disjoint union of knots L = K1 ∪K2 ∪ ⋅ ⋅ ⋅ ∪Kn.
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De�nition

An annular knot K is a subset of the thickened annulus A × I
homeomorphic to a circumference S1.

An annular link L is a �nite disjoint union of annular knots

L = K1 ∪K2 ∪ ⋅ ⋅ ⋅ ∪Kn.
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De�nition

Two links L1 y L2 are equivalent if there exists an ambient isotopy

F ∶ R3 × [0,1] Ð→ R3 such that F (L1,0) = L1 and F (L1,1) = L2.

Two diagrams are equivalent if they represent equivalent links.

De�nition

A link invariant is a function from the set of (annular) links whose

value depends only on the equivalence class of the link.
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Theorem (Reidemeister, 1927)

Two diagrams D and D ′ represent equivalent links if and only if

there is a �nite sequence of Reidemeister moves that transform D
into D ′.
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Theorem (Hoste and Przytycki, 1989)

Two annular diagrams D and D ′ represent equivalent annular links
if and only if there is a �nite sequence of annular Reidemeister

moves that transform D into D ′.
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We can orientate a link choosing an orientation for each

component.

Given an oriented diagram D, we call writhe of D to the number of

positive crossing p minus the number of negative crossings n of D,

w(D) = p − n.
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De�nition

Let D be a non-oriented diagram. We de�ne the Kau�man bracket

of D as the polynomial ⟨D⟩ ∈ Z[A±1] that satis�es the following

axioms:

1 ⟨◯⟩ = 1,

2 ⟨D ⊔◯⟩ = (−A2 −A−2)⟨D⟩,
3 ⟨ ⟩ = A ⟨ ⟩ +A−1 ⟨ ⟩.

De�nition

Let D be an oriented diagram of a link L. We de�ne the Jones

polynomial of D as

V (D) = (−A)−3w(D)⟨D⟩.

It is a link invariant.
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De�nition

Let D be an annular diagram. We de�ne the annular Kau�man

bracket of D as the polynomial ⟨D⟩A ∈ Z[A±1,h] that satis�es the
following axioms:

1 ⟨⋅◯⟩A = 1,

2 ⟨⊙⟩A = h,

3 ⟨ ⟩A = A⟨ ⟩A +A−1⟨ ⟩A,
4 ⟨⋅◯ ⊔D⟩A = (−A2 −A−2)⟨⋅D⟩A,
5 ⟨⊙⊔D⟩A = (−A2 −A−2)h⟨⋅D⟩A.
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De�nition (Hoste and Przytycki)

Let D be an annular diagram of an oriented annular link L. We

de�ne the annular Jones polynomial of D as

VA(D) = (−A)−3w(D)⟨D⟩A.

It is an annular link invariant.

If L is an annular link contained in a 3-ball in A × I , then
VA(L) = V (L).
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De�nition

Let D be a diagram of a link L. We de�ne the bracket polynomial D
as the polynomial ⟨D⟩ ∈ Z[q±1] that satis�es the following axioms:

1 ⟪◯⟫ = 1,

2 ⟪D ⊔◯⟫ = (q + q−1)⟪D⟫,
3 ⟪ ⟫ = ⟪ ⟫ − q ⟪ ⟫.
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De�nition

Let D be a diagram of a link L, p and n the number of positive and

negative crossings, respectively, of D. We de�ne the normalized

Jones polynomial (in the varaible q) of L as

J(L) = (−1)nqp−2n⟪D⟫.
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De�nition

Given a diagram D, a Kau�man state s of D is an assignment of a

label 0 o 1 to each crossing of the diagram.

A 0-smoothing and a 1-smoothing is the result of swapping a

crossing for and , respectively.

0 1

1 2

3

Figure: Kau�man state 010 of the trefoil knot.
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A Kau�man state of an annular diagram has two types of circles:

Trivial circles, that bound a disk in the punctured plane.

Essential circles, that do not bound a disk in the punctured plane.
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J(L) = (−1)nqp−2n∑
s

(−q)r(q + q−1)k−1,

where r is the height or number of 1-smoothings of s,
k is the number of circles in s,
p is the number of positive crossings,

n is the number of negative crossings.
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J(L) = (−1)nqp−2n∑
s
(−q)r (q + q−1)k−1.

21

3
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J( ) = (−1)nqp−2n⟪ ⟫ = (−1)3q−6(q−2 − 1 − q4) = −q−8 + q−6 + q−2.
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V = ⟨v+, v−⟩ graded vector space, where deg(v+) = 1 and

deg(v−) = −1.

q dimV = q + q−1.

Vs(D) = V⊗ k{r} Ô⇒ q dimVs(D) = qr(q + q−1)k .

. . .Ð→ [[D]]r d r

Ð→ [[D]]r+1 d r+1

ÐÐ→ . . .

[[D]]r = ⊕
s ∶∣s ∣=r

Vs(D).

Khovanov complex:

C(D) = [[D]][−n]{p − 2n}.

J(L) = (−1)nqp−2n∑
s
(−q)r (q + q−1)k−1.
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◯◯ z→ ◯
m∶ V ⊗V Ð→ V

v+ ⊗ v+ z→ v+,
v+ ⊗ v− z→ v−,
v− ⊗ v+ z→ v−,
v− ⊗ v− z→ 0.

◯ z→ ◯◯
∆∶ V Ð→ V ⊗V

v+ z→ v+ ⊗ v− + v− ⊗ v+,
v− z→ v− ⊗ v−.

d r = ∑
∣ξ∣=r

(−1)ξdξ.
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De�nition

Let D be a diagram of an oriented link L. We de�ne the Khovanov

homology, H(D), as the set of homology groups of C(D).

Theorem (Khovanov, 2000)

The Khovanov homology Hr(D) is a link invariant.

The graded Poincaré polynomial of C(D),

∑
r

tr dimHr(D)

is a link invariant that recovers the Jones polynomial:

J̃(L) = ∑
r

(−1)r dimHr(D).
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H
HHH

HHj
i −3 −2 −1 0

−1 Z
−3 Z
−5 Z
−7 Z2

−9 Z

∑
r

tr dimHr( ) = t−3q−9 + t−2q−5 + q−3 + q−1.

J( ) = −q−9 + q−5 + q−3 + q−1

q + q−1
= −q−8 + q−6 + q−2.
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Khovanov homology is a sharper invariant than Jones polynomial:

J(51) = J(10132) = −q−7 + q−6 − q−5 + q−4 + q−2.

Figure: Diagram of 51. Figure: Diagram of 10132.
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Khovanov homology is a sharper invariant than Jones polynomial:

J(51) = J(10132) = −q−7 + q−6 − q−5 + q−4 + q−2.

Hi ,j(51)

HH
HHHHj

i −5 −4 −3 −2 −1 0

−3 Z
−5 Z
−7 Z
−9
−11 Z Z
−13
−15 Z

Hi ,j(10132)

HH
HHHHj

i −7 −6 −5 −4 −3 −2 −1 0

−1 Z Z
−3 Z
−5 Z Z2

−7 Z
−9 Z Z
−11 Z Z
−13
−15 Z

Sergio García Rodrigo An introduction to Khovanov homology and annular links
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Khovanov homology is not a complete invariant: it doesn't

distinguish Kinoshita-Terasaka's knot and Conway's knot.
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Theorem (Kronheimer and Mrowka, 2010)

Khovanov homology detects the trivial knot.
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Annular Khovanov homology

We construct the resolution cube.

◯→ V = ⟨v+, v−⟩.

degq(v+) = 1,degq(v−) = −1,

degh(v+) = 0 = degh(v−).

⊙→W = ⟨w+,w−⟩.

degq(w+) = 0 = degq(w−),

degh(w+) = 1,degh(w−) = −1.

Vs(D) = V⊗a ⊗W⊗b{r}, where a = #◯,b = #⊙ .

. . .Ð→ [[D]]rA
d r

Ð→ [[D]]r+1A
d r+1

ÐÐ→ . . .

[[D]]rA = ⊕
s ∶∣s ∣=r

Vs(D) = ⊕
s ∶∣s ∣=r

V⊗a ⊗W⊗b{r}.

Annular Khovanov complex: CA(D) = [[D]]A[−n]{p − 2n}.
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We de�ne maps m and ∆.

d r = ∑
∣ξ∣=r

(−1)ξdξ.
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De�nition

Let D be an annular diagram of an oriented link L. We de�ne the

annular Khovanov homology of D, HA(D), as the set of homology

groups of the annular Khovanov complex CA(D).

If L is an annular link contained in a 3-ball in A × I , then
CA(D) = C(D), hence HA(L) = H(L).
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De�nition

Let D be an annular diagram of an oriented link L. We de�ne the

annular Khovanov homology of D, HA(D), as the set of homology

groups of the annular Khovanov complex CA(D).

Theorem (Asaeda, Przytycki and Sikora, 2004)

The annular Khovanov homology Hr
A(D) is an annular link

invariant.

Annular Khovanov homology categori�es the annular Jones

polynomial.
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De�nition

Given a link L in the solid torus T, we de�ne the wrapping number

of L, wrap(L), as the minimal intersection of L with a meridional

disk of T.
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Conjecture (Wrapping conjecture. Hoste and Przytycki, 1995)

Let L be an annular link. Then, the maximum annular degree of

VA(L) coincides with the wrapping numberof L. That is,

max degh VA(L) = wrap(L).

Conjecture (Wrapping conjecture II)

Let L be an annular link. Then,

max{k ∣H∗∗k(L) not trivial} = wrap(L).
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Thank you!
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