Four definitions for the fractional Laplacian

N. Accomazzo (UPV/EHU), S. Baena (UB), A. Becerra Tomé (US), J. Martínez (BCAM), A. Rodríguez (UCM), I. Soler (UM)

VIII Escuela-Taller de Análisis Funcional Basque Center for Applied Mathematics (BCAM)
Nap time, March 8, 2018^{1}

[^0]
A pointwise definition of the fractional Laplacian

Laplace fractional operator: several points of view

- Functional analysis: M. Riesz, S. Bochner, W. Feller, E. Hille, R. S. Phillips, A. V. Balakrishnan, T. Kato, Martínez-Carracedo y Sanz-Alix, K. Yosida
- potencial theory for fractional laplacian: N. S. Landkof
- Lévy's processes: K. Bogdan e.a.
- Partial Derivative Ecuations: L. Caffarelli y L. Silvestre
- Scattering theory: C. R. Graham y M. Zworski, S-Y. A. Chang y M.d.M. González
- Kato's square root (solved by P. Auscher e.a.)

Laplace fractional operator: several points of view

- Functional analysis: M. Riesz, S. Bochner, W. Feller, E. Hille, R. S. Phillips, A. V. Balakrishnan, T. Kato, Martínez-Carracedo y Sanz-Alix, K. Yosida
- potencial theory for fractional laplacian: N. S. Landkof
- Lévy's processes: K. Bogdan e.a.
- Partial Derivative Ecuations: L. Caffarelli y L. Silvestre
- Scattering theory: C. R. Graham y M. Zworski, S-Y. A. Chang y M.d.M. González
- Kato's square root (solved by P. Auscher e.a.)

Basic example of fractional operator : fractional laplacean

The working space

We are going to work with the space $\mathscr{S}\left(\mathbb{R}^{n}\right)$ of L . Schwartz' rapidly decreasing functions.

The working space

We are going to work with the space $\mathscr{S}\left(\mathbb{R}^{n}\right)$ of L . Schwartz' rapidly decreasing functions.
$\mathscr{S}\left(\mathbb{R}^{n}\right)$ is the space $C^{\infty}\left(\mathbb{R}^{n}\right)$ of functions that

$$
\|f\|_{p}=\sup _{|\alpha| \leq p x \in \mathbb{R}^{n}} \sup _{x}\left(1+|x|^{2}\right)^{p / 2}\left|\partial^{\alpha} f(x)\right|<\infty \quad p \in \mathbb{N} \cup\{0\}
$$

The working space

We are going to work with the space $\mathscr{S}\left(\mathbb{R}^{n}\right)$ of L . Schwartz' rapidly decreasing functions.
$\mathscr{S}\left(\mathbb{R}^{n}\right)$ is the space $C^{\infty}\left(\mathbb{R}^{n}\right)$ of functions that

$$
\|f\|_{p}=\sup _{|\alpha| \leq p} \sup _{x \in \mathbb{R}^{n}}\left(1+|x|^{2}\right)^{p / 2}\left|\partial^{\alpha} f(x)\right|<\infty \quad p \in \mathbb{N} \cup\{0\}
$$

This space endowed with the metric topology

$$
d(f, g)=\sum_{p=0}^{\infty} 2^{-p} \frac{\|f-g\|_{p}}{1+\|f-g\|_{p}}
$$

First definition motivation

Let $f \in C^{2}(a, b)$, then for every $x \in(a, b)$ one has

$$
-f^{\prime \prime}(x)=\lim _{y \rightarrow 0} \frac{2 f(x)-f(x+y)-f(x-y)}{y^{2}}
$$

First definition motivation

Let $f \in C^{2}(a, b)$, then for every $x \in(a, b)$ one has

$$
-f^{\prime \prime}(x)=\lim _{y \rightarrow 0} \frac{2 f(x)-f(x+y)-f(x-y)}{y^{2}}
$$

If we introduce the spherical and solid averaging operators

$$
\mathscr{M}_{y} f(x)=\frac{f(x+y)+f(x-y)}{2} \quad \mathscr{A}_{y} f(x)=\frac{1}{2 y} \int_{x-y}^{x+y} f(t) d t
$$

First definition motivation

Let $f \in C^{2}(a, b)$, then for every $x \in(a, b)$ one has

$$
-f^{\prime \prime}(x)=\lim _{y \rightarrow 0} \frac{2 f(x)-f(x+y)-f(x-y)}{y^{2}}
$$

If we introduce the spherical and solid averaging operators

$$
\mathscr{M}_{y} f(x)=\frac{f(x+y)+f(x-y)}{2} \quad \mathscr{A}_{y} f(x)=\frac{1}{2 y} \int_{x-y}^{x+y} f(t) d t
$$

then we can reformulate $-f^{\prime \prime}(x)$ like this

$$
-f^{\prime \prime}(x)=2 \lim _{y \rightarrow 0} \frac{f(x)-\mathscr{M}_{y} f(x)}{y^{2}}=6 \lim _{y \rightarrow 0} \frac{f(x)-\mathscr{A}_{y} f(x)}{y^{2}}
$$

First definition motivation

Thus, if we bear in mind that $-\Delta f=-\sum_{k=1}^{n} \frac{\partial^{2} f}{\partial x_{k}^{2}}$ and making an extension of the spherical and solid averaging operators

$$
\mathscr{M}_{y} f(x)=\frac{1}{\sigma_{(n-1)} r^{(n-1)}} \int_{S(x, r)} f(y) d \sigma(y) \quad \mathscr{A}_{y} f(x)=\frac{1}{\omega_{n} r^{n}} \int_{B(x, r)} f(y) d y
$$

First definition motivation

Thus, if we bear in mind that $-\Delta f=-\sum_{k=1}^{n} \frac{\partial^{2} f}{\partial x_{k}^{2}}$ and making an extension of the spherical and solid averaging operators

$$
\mathscr{M}_{y} f(x)=\frac{1}{\sigma_{(n-1)} r^{(n-1)}} \int_{S(x, r)} f(y) d \sigma(y) \quad \mathscr{A}_{y} f(x)=\frac{1}{\omega_{n} r^{n}} \int_{B(x, r)} f(y) d y
$$

then we have

$$
-\Delta f(x)=2 n \lim _{y \rightarrow 0} \frac{f(x)-\mathscr{M}_{y} f(x)}{y^{2}}=2(n+2) \lim _{y \rightarrow 0} \frac{f(x)-\mathscr{A}_{y} f(x)}{y^{2}}
$$

Finally, as a generalization of the operator $(-\Delta) f$ one can define $(-\Delta)^{s} f$ as an \mathbb{R}^{n} non local operator. If we have $u \in \mathscr{S}\left(\mathbb{R}^{n}\right)$, we define:

Finally, as a generalization of the operator $(-\Delta) f$ one can define $(-\Delta)^{s} f$ as an \mathbb{R}^{n} non local operator. If we have $u \in \mathscr{S}\left(\mathbb{R}^{n}\right)$, we define:

$$
(-\Delta)^{s} u(x)=\frac{\gamma(n, s)}{2} \int_{\mathbb{R}^{n}} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y, \quad s \in(0,1)
$$

Finally, as a generalization of the operator $(-\Delta) f$ one can define $(-\Delta)^{s} f$ as an \mathbb{R}^{n} non local operator. If we have $u \in \mathscr{S}\left(\mathbb{R}^{n}\right)$, we define:

$$
(-\Delta)^{s} u(x)=\frac{\gamma(n, s)}{2} \int_{\mathbb{R}^{n}} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y, \quad s \in(0,1)
$$

Observation 1: $\gamma(n, s)$ is, at this moment, an unknown constant

Finally, as a generalization of the operator $(-\Delta) f$ one can define $(-\Delta)^{s} f$ as an \mathbb{R}^{n} non local operator. If we have $u \in \mathscr{S}\left(\mathbb{R}^{n}\right)$, we define:

$$
(-\Delta)^{s} u(x)=\frac{\gamma(n, s)}{2} \int_{\mathbb{R}^{n}} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y, \quad s \in(0,1)
$$

Observation 1: $\gamma(n, s)$ is, at this moment, an unknown constant Observation 2: this is a linear operator.

Finally, as a generalization of the operator $(-\Delta) f$ one can define $(-\Delta)^{s} f$ as an \mathbb{R}^{n} non local operator. If we have $u \in \mathscr{S}\left(\mathbb{R}^{n}\right)$, we define:

$$
(-\Delta)^{s} u(x)=\frac{\gamma(n, s)}{2} \int_{\mathbb{R}^{n}} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y, \quad s \in(0,1)
$$

Observation 1: $\gamma(n, s)$ is, at this moment, an unknown constant Observation 2: this is a linear operator.

Observation 3: since as $s \rightarrow 1^{-}$the fractional Laplacean tends (at least, formally right now) to ($-\Delta$), one might surmise that in the regime $1 / 2<s<1$ the operator $(-\Delta)^{s}$ should display properties closer to those of the classical Laplacian, whereas since $(-\Delta)^{s} \rightarrow I$ as $s \rightarrow 0^{+}$, the stronger discrepancies might present themselves in the range $0<s<1 / 2$

$(-\Delta u(x))$ is well-defined

It is important to observe that the integral in the right-hand side is convergent. In order to see this, it suffices to write:

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y=\int_{|y| \leq 1} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y+ \\
+\int_{|y| \geq 1} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y=(a)+(b)
\end{gathered}
$$

$(-\Delta u(x))$ is well-defined

It is important to observe that the integral in the right-hand side is convergent. In order to see this, it suffices to write:

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y=\int_{|y| \leq 1} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y+ \\
+\int_{|y| \geq 1} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y=(a)+(b)
\end{gathered}
$$

Starting with (a):

$$
|(a)| \leq \int_{|y| \leq 1} \frac{|2 u(x)-u(x+y)-u(x-y)|}{|y|^{n+2 s}} d y
$$

$(-\Delta u(x))$ is well-defined

It is important to observe that the integral in the right-hand side is convergent. In order to see this, it suffices to write:

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y=\int_{|y| \leq 1} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y+ \\
+\int_{|y| \geq 1} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y=(a)+(b)
\end{gathered}
$$

Starting with (a):

$$
|(a)| \leq \int_{|y| \leq 1} \frac{|2 u(x)-u(x+y)-u(x-y)|}{|y|^{n+2 s}} d y
$$

Using Taylor $2 u(x)-u(x+y)-u(x-y)=-\left\langle\nabla^{2} u(x) y, y\right\rangle+o\left(|x|^{3}\right)$

Therefore

$$
=\int_{|y| \leq 1} \frac{\left|\left\langle\nabla^{2} u(x) y, y\right\rangle+o\left(|x|^{3}\right)\right|}{|y|^{n+2 s}} d y
$$

Therefore

$$
=\int_{|y| \leq 1} \frac{\left|\left\langle\nabla^{2} u(x) y, y\right\rangle+o\left(|x|^{3}\right)\right|}{|y|^{n+2 s}} d y
$$

Using Cauchy-Schwarz inequality

$$
\begin{aligned}
& \leq \int_{|y| \leq 1} \frac{\left|\nabla^{2} u(x) y\right||y|+\left|o\left(|x|^{3}\right)\right|}{|y|^{n+2 s}} d y \leq \int_{|y| \leq 1} \frac{\left|\nabla^{2} u(x)\right||y|^{2}+\left|o\left(|x|^{3}\right)\right|}{|y|^{n+2 s}} d y \\
& \quad=C \int_{|y| \leq 1} \frac{1}{|y|^{n-2(1-s)}} d y=
\end{aligned}
$$

Therefore

$$
=\int_{|y| \leq 1} \frac{\left|\left\langle\nabla^{2} u(x) y, y\right\rangle+o\left(|x|^{3}\right)\right|}{|y|^{n+2 s}} d y
$$

Using Cauchy-Schwarz inequality

$$
\begin{aligned}
& \leq \int_{|y| \leq 1} \frac{\left|\nabla^{2} u(x) y\right||y|+\left|o\left(|x|^{3}\right)\right|}{|y|^{n+2 s}} d y \leq \int_{|y| \leq 1} \frac{\left|\nabla^{2} u(x)\right||y|^{2}+\left|o\left(|x|^{3}\right)\right|}{|y|^{n+2 s}} d y \\
& \quad=C \int_{|y| \leq 1} \frac{1}{|y|^{n-2(1-s)}} d y=
\end{aligned}
$$

Therefore

$$
=\int_{|y| \leq 1} \frac{\left|\left\langle\nabla^{2} u(x) y, y\right\rangle+o\left(|x|^{3}\right)\right|}{|y|^{n+2 s}} d y
$$

Using Cauchy-Schwarz inequality

$$
\begin{gathered}
\leq \int_{|y| \leq 1} \frac{\left|\nabla^{2} u(x) y\right||y|+\left|o\left(|x|^{3}\right)\right|}{|y|^{n+2 s}} d y \leq \int_{|y| \leq 1} \frac{\left|\nabla^{2} u(x)\right||y|^{2}+\left|o\left(|x|^{3}\right)\right|}{|y|^{n+2 s}} d y \\
\quad=C \int_{|y| \leq 1} \frac{1}{|y|^{n-2(1-s)}} d y=\int_{0}^{1} \int_{S_{n-1}} \frac{1}{r^{1-2 s}} d \sigma(\omega) d r<\infty
\end{gathered}
$$

Therefore

$$
=\int_{|y| \leq 1} \frac{\left|\left\langle\nabla^{2} u(x) y, y\right\rangle+o\left(|x|^{3}\right)\right|}{|y|^{n+2 s}} d y
$$

Using Cauchy-Schwarz inequality

$$
\begin{gathered}
\leq \int_{|y| \leq 1} \frac{\left|\nabla^{2} u(x) y\right||y|+\left|o\left(|x|^{3}\right)\right|}{|y|^{n+2 s}} d y \leq \int_{|y| \leq 1} \frac{\left|\nabla^{2} u(x)\right||y|^{2}+\left|o\left(|x|^{3}\right)\right|}{|y|^{n+2 s}} d y \\
\quad=C \int_{|y| \leq 1} \frac{1}{|y|^{n-2(1-s)}} d y=\int_{0}^{1} \int_{S_{n-1}} \frac{1}{r^{1-2 s}} d \sigma(\omega) d r<\infty
\end{gathered}
$$

Now, for (b):

$$
\left|\int_{|y| \geq 1} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y\right| \leq 4\|u\|_{L_{\infty}\left(\mathbb{R}^{n}\right)} \int_{|y| \geq 1} \frac{1}{|y|^{n+2 s}} d y<\infty
$$

Translations and dilations

Let $h \in \mathbb{R}^{n}$ and $\lambda>0$, the translation and dilation operators are defined, respectively, by

$$
\tau_{h} f(x)=f(x+h) ; \quad \delta_{\lambda} f(x)=f(\lambda x)
$$

for every $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and every $x \in \mathbb{R}^{n}$

Translations and dilations

Let $h \in \mathbb{R}^{n}$ and $\lambda>0$, the translation and dilation operators are defined, respectively, by

$$
\tau_{h} f(x)=f(x+h) ; \quad \delta_{\lambda} f(x)=f(\lambda x)
$$

for every $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and every $x \in \mathbb{R}^{n}$

Proposition 1

Let $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, then for every $h \in \mathbb{R}^{n}$ and $\lambda>0$ we have

$$
(-\Delta)^{s}\left(\tau_{h} u\right)=\tau_{h}\left((-\Delta)^{s} u\right)
$$

and

$$
(-\Delta)^{s}\left(\delta_{\lambda} u\right)=\lambda^{2 s} \delta_{\lambda}\left((-\Delta)^{s} u\right)
$$

Translations and dilations

Let $h \in \mathbb{R}^{n}$ and $\lambda>0$, the translation and dilation operators are defined, respectively, by

$$
\tau_{h} f(x)=f(x+h) ; \quad \delta_{\lambda} f(x)=f(\lambda x)
$$

for every $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and every $x \in \mathbb{R}^{n}$

Proposition 1

Let $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, then for every $h \in \mathbb{R}^{n}$ and $\lambda>0$ we have

$$
(-\Delta)^{s}\left(\tau_{h} u\right)=\tau_{h}\left((-\Delta)^{s} u\right)
$$

and

$$
(-\Delta)^{s}\left(\delta_{\lambda} u\right)=\lambda^{2 s} \delta_{\lambda}\left((-\Delta)^{s} u\right)
$$

In particular, $(-\Delta)^{s}$ is a homogeneous operator of order $2 s$.

Orthogonal group

Recall that the orthogonal group is

$$
\mathrm{O}(n)=\left\{T \in \mathcal{M}_{n}(\mathbb{R}): T^{t} T=T T^{t}=I\right\}
$$

Orthogonal group

Recall that the orthogonal group is

$$
\mathrm{O}(n)=\left\{T \in \mathcal{M}_{n}(\mathbb{R}): T^{t} T=T T^{t}=I\right\}
$$

The usual Laplacian satisfies $\Delta(u \circ T)=\Delta u \circ T$ for every $T \in \mathbb{O}(n)$.
What about the fractional Laplacian?

Orthogonal group

Recall that the orthogonal group is

$$
\mathrm{O}(n)=\left\{T \in \mathcal{M}_{n}(\mathbb{R}): T^{t} T=T T^{t}=I\right\}
$$

The usual Laplacian satisfies $\Delta(u \circ T)=\Delta u \circ T$ for every $T \in \mathbb{O}(n)$.

What about the fractional Laplacian?

We say that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has spherical symmetry if $f(x)=f^{*}(|x|)$ for some $f^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ or, equivalently, if $f(T x)=f(x)$ for every $T \in \mathbb{O}(n)$ and every $x \in \mathbb{R}$

Orthogonal group

Recall that the orthogonal group is

$$
\mathrm{O}(n)=\left\{T \in \mathcal{M}_{n}(\mathbb{R}): T^{t} T=T T^{t}=I\right\}
$$

The usual Laplacian satisfies $\Delta(u \circ T)=\Delta u \circ T$ for every $T \in \mathbb{O}(n)$.

What about the fractional Laplacian?

We say that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has spherical symmetry if $f(x)=f^{*}(|x|)$ for some $f^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ or, equivalently, if $f(T x)=f(x)$ for every $T \in \mathbb{O}(n)$ and every $x \in \mathbb{R}$

Proposition 2

Let $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ (actually, it is enough that $u \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$) be a function with spherical symmetry. Then, $(-\Delta)^{s}$ has spherical symmetry.

Orthogonal group (Cont.)

PROOF.-

Orthogonal group (Cont.)

PROOF.-

Let's see that $(-\Delta)^{s} u(T x)=(-\Delta)^{s} u(x)$ for each $T \in \mathbb{O}(n)$ and each $x \in \mathbb{R}^{n}$

Orthogonal group (Cont.)

PROOF.-

Let's see that $(-\Delta)^{s} u(T x)=(-\Delta)^{s} u(x)$ for each $T \in \mathbb{O}(n)$ and each $x \in \mathbb{R}^{n}$

$$
\begin{gathered}
(-\Delta)^{s} u(T x)=\frac{\gamma(n, s)}{2} \int_{\mathbb{R}^{n}} \frac{2 u^{*}(|T x|)-u^{*}(|T x+y|)-u^{*}(|T x-y|)}{|y|^{2 n+s}} d y \\
\quad=\frac{\gamma(n, s)}{2} \int_{\mathbb{R}^{n}} \frac{2 u^{*}(|x|)-u^{*}\left(\left|x+T^{t} y\right|\right)-u^{*}\left(\left|x-T^{t} y\right|\right)}{|y|^{2 n+s}} d y
\end{gathered}
$$

Orthogonal group (Cont.)

PROOF.-

Let's see that $(-\Delta)^{s} u(T x)=(-\Delta)^{s} u(x)$ for each $T \in \mathbb{O}(n)$ and each $x \in \mathbb{R}^{n}$

$$
\begin{gathered}
(-\Delta)^{s} u(T x)=\frac{\gamma(n, s)}{2} \int_{\mathbb{R}^{n}} \frac{2 u^{*}(|T x|)-u^{*}(|T x+y|)-u^{*}(|T x-y|)}{|y|^{2 n+s}} d y \\
\quad=\frac{\gamma(n, s)}{2} \int_{\mathbb{R}^{n}} \frac{2 u^{*}(|x|)-u^{*}\left(\left|x+T^{t} y\right|\right)-u^{*}\left(\left|x-T^{t} y\right|\right)}{|y|^{2 n+s}} d y
\end{gathered}
$$

Change of variable: $z=T^{t} y$

Orthogonal group (Cont.)

PROOF.-

Let's see that $(-\Delta)^{s} u(T x)=(-\Delta)^{s} u(x)$ for each $T \in \mathbb{O}(n)$ and each $x \in \mathbb{R}^{n}$

$$
\begin{gathered}
(-\Delta)^{s} u(T x)=\frac{\gamma(n, s)}{2} \int_{\mathbb{R}^{n}} \frac{2 u^{*}(|T x|)-u^{*}(|T x+y|)-u^{*}(|T x-y|)}{|y|^{2 n+s}} d y \\
\quad=\frac{\gamma(n, s)}{2} \int_{\mathbb{R}^{n}} \frac{2 u^{*}(|x|)-u^{*}\left(\left|x+T^{t} y\right|\right)-u^{*}\left(\left|x-T^{t} y\right|\right)}{|y|^{2 n+s}} d y
\end{gathered}
$$

Change of variable: $z=T^{t} y$

$$
=\frac{\gamma(n, s)}{2} \int_{\mathbb{R}^{n}} \frac{2 u^{*}(|x|)-u^{*}(|x+z|)-u^{*}(|x-z|)}{|T z|^{2 n+s}} d z
$$

Orthogonal group (Cont.)

PROOF.-

Let's see that $(-\Delta)^{s} u(T x)=(-\Delta)^{s} u(x)$ for each $T \in \mathbb{O}(n)$ and each $x \in \mathbb{R}^{n}$

$$
\begin{gathered}
(-\Delta)^{s} u(T x)=\frac{\gamma(n, s)}{2} \int_{\mathbb{R}^{n}} \frac{2 u^{*}(|T x|)-u^{*}(|T x+y|)-u^{*}(|T x-y|)}{|y|^{2 n+s}} d y \\
\quad=\frac{\gamma(n, s)}{2} \int_{\mathbb{R}^{n}} \frac{2 u^{*}(|x|)-u^{*}\left(\left|x+T^{t} y\right|\right)-u^{*}\left(\left|x-T^{t} y\right|\right)}{|y|^{2 n+s}} d y
\end{gathered}
$$

Change of variable: $z=T^{t} y$

$$
\begin{gathered}
=\frac{\gamma(n, s)}{2} \int_{\mathbb{R}^{n}} \frac{2 u^{*}(|x|)-u^{*}(|x+z|)-u^{*}(|x-z|)}{|T z|^{2 n+s}} d z \\
=\frac{\gamma(n, s)}{2} \int_{\mathbb{R}^{n}} \frac{2 u^{*}(|x|)-u^{*}(|x+z|)-u^{*}(|x-z|)}{|z|^{2 n+s}} d z=(-\Delta)^{s} u(x)
\end{gathered}
$$

Alternative expression for the fractional Laplacian

Now we find a new pointwise expression for the fractional Laplacian which will be useful when we prove the equivalence of the different definitions.

Alternative expression for the fractional Laplacian

Now we find a new pointwise expression for the fractional Laplacian which will be useful when we prove the equivalence of the different definitions.

Theorem

Let $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, then

$$
(-\Delta)^{s} u(x)=\gamma(n, s) P . V . \int_{\mathbb{R}^{n}} \frac{u(x)-u(y)}{|x-y|^{n+2 s}} d y
$$

where P.V. means the Cauchy's principal value, i.e.

$$
\text { P.V. } \int_{\mathbb{R}^{n}} \frac{u(x)-u(y)}{|x-y|^{n+2 s}} d y=\lim _{\varepsilon \rightarrow 0^{+}} \int_{|x-y|>\varepsilon} \frac{u(x)-u(y)}{|x-y|^{n+2 s}} d y
$$

Alternative expression for the fractional Laplacian (Cont.)

PROOF.-

Alternative expression for the fractional Laplacian (Cont.)

PROOF.-

$$
(-\Delta)^{s} u(x)=\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|y|>\varepsilon} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y
$$

Alternative expression for the fractional Laplacian (Cont.)

PROOF.-

$$
\begin{gathered}
(-\Delta)^{s} u(x)=\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|y|>\varepsilon} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y \\
=\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|y|>\varepsilon} \frac{u(x)-u(x+y)}{|y|^{n+2 s}} d y+\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|y|>\varepsilon} \frac{u(x)-u(x-y)}{|y|^{n+2 s}} d y
\end{gathered}
$$

Alternative expression for the fractional Laplacian (Cont.)

PROOF.-

$$
\begin{gathered}
(-\Delta)^{s} u(x)=\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|y|>\varepsilon} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y \\
=\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|y|>\varepsilon} \frac{u(x)-u(x+y)}{|y|^{n+2 s}} d y+\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|y|>\varepsilon} \frac{u(x)-u(x-y)}{|y|^{n+2 s}} d y
\end{gathered}
$$

Changes of variables:

- $x+y=z$ in the first integral
- $x-y=z$ in the second integral

Alternative expression for the fractional Laplacian (Cont.)

PROOF.-

$$
\begin{gathered}
(-\Delta)^{s} u(x)=\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|y|>\varepsilon} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y \\
=\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|y|>\varepsilon} \frac{u(x)-u(x+y)}{|y|^{n+2 s}} d y+\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|y|>\varepsilon} \frac{u(x)-u(x-y)}{|y|^{n+2 s}} d y
\end{gathered}
$$

Changes of variables:

- $x+y=z$ in the first integral
- $x-y=z$ in the second integral

$$
=\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|z-x|>\varepsilon} \frac{u(x)-u(z)}{|z-x|^{n+2 s}} d z+\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|x-z|>\varepsilon} \frac{u(x)-u(z)}{|x-z|^{n+2 s}} d z
$$

Alternative expression for the fractional Laplacian (Cont.)

PROOF.-

$$
\begin{gathered}
(-\Delta)^{s} u(x)=\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|y|>\varepsilon} \frac{2 u(x)-u(x+y)-u(x-y)}{|y|^{n+2 s}} d y \\
=\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|y|>\varepsilon} \frac{u(x)-u(x+y)}{|y|^{n+2 s}} d y+\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|y|>\varepsilon} \frac{u(x)-u(x-y)}{|y|^{n+2 s}} d y
\end{gathered}
$$

Changes of variables:

- $x+y=z$ in the first integral
- $x-y=z$ in the second integral

$$
\begin{gathered}
=\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|z-x|>\varepsilon} \frac{u(x)-u(z)}{|z-x|^{n+2 s}} d z+\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|x-z|>\varepsilon} \frac{u(x)-u(z)}{|x-z|^{n+2 s}} d z \\
\\
=\lim _{\varepsilon \rightarrow 0^{+}} \int_{|x-z|>\varepsilon} \frac{u(x)-u(z)}{|x-z|^{n+2 s}} d z
\end{gathered}
$$

Another two definitions of the fractional Laplacian

Fourier transform

We recall the definition of the Fourier transform, \mathcal{F}, of a function $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$:

$$
\mathcal{F}(f)(\xi)=\hat{f}(\xi)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} f(x) e^{-i x \cdot \xi} d x, \quad \xi \in \mathbb{R}^{n}
$$

Fourier transform

We recall the definition of the Fourier transform, \mathcal{F}, of a function $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$:

$$
\mathcal{F}(f)(\tilde{\xi})=\hat{f}(\xi)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} f(x) e^{-i x \cdot \xi} d x, \quad \xi \in \mathbb{R}^{n}
$$

whose inverse function is given by

$$
\mathcal{F}^{-1}(f)(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} f(\xi) e^{i x \cdot \xi} d \xi, \quad x \in \mathbb{R}^{n}
$$

Fourier transform

We recall the definition of the Fourier transform, \mathcal{F}, of a function $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$:

$$
\mathcal{F}(f)(\xi)=\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x, \quad \xi \in \mathbb{R}^{n}
$$

whose inverse function is given by

$$
\mathcal{F}^{-1}(f)(x)=\int_{\mathbb{R}^{n}} f(\xi) e^{2 \pi i x \cdot \xi} d \xi, \quad x \in \mathbb{R}^{n}
$$

Fourier transform

We recall the definition of the Fourier transform, \mathcal{F}, of a function $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$:

$$
\mathcal{F}(f)(\xi)=\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x, \quad \xi \in \mathbb{R}^{n}
$$

whose inverse function is given by

$$
\mathcal{F}^{-1}(f)(x)=\int_{\mathbb{R}^{n}} f(\xi) e^{2 \pi i x \cdot \xi} d \xi, \quad x \in \mathbb{R}^{n},
$$

so that

$$
f(x)=\mathcal{F}^{-1} \circ \mathcal{F}(f)(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{i x \cdot \xi} d \xi, \quad x \in \mathbb{R}^{n}
$$

Definition of $(-\Delta)^{s}$ via the heat semigroup $e^{t \Delta}$

We will define $(-\Delta)^{s} f$ in terms of the heat semigroup $e^{t \Delta}$, which is nothing but an operator such that maps every function $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ to the solution of the heat equation with initial data given by f :

$$
\begin{cases}v_{t}=\Delta v, & (x, t) \in \mathbb{R}^{n} \times(0, \infty) \\ v(x, 0)=f(x), & x \in \mathbb{R}^{n}\end{cases}
$$

Using Fourier transform and its inverse and with a bit of magic, we can write

$$
e^{t \Delta} f(x):=v(x, t)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{-t|\xi|^{2}} \hat{f}(\xi) e^{i x \cdot \xi} d \xi=\int_{\mathbb{R}^{n}} W_{t}(x-z) f(z) d z
$$

where

$$
W_{t}(x)=(4 \pi t)^{-n / 2} e^{-\frac{|x|^{2}}{4 t}}, \quad x \in \mathbb{R}^{n}
$$

is the Gauss-Weierstrass kernel.

Definition of $(-\Delta)^{s}$ via the heat semigroup $e^{t \Delta}$

Inspired by the following numerical identity: for $\lambda>0$,

$$
\lambda^{s}=\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{-t \lambda}-1\right) \frac{d t}{t^{1+s}}, \quad 0<s<1
$$

where

$$
\Gamma(-s)=\int_{0}^{\infty}\left(e^{-r}-1\right) \frac{d r}{r^{1+s}}<0
$$

we can think of $(-\Delta)^{s}$ as the following operator

$$
(-\Delta)^{s} f(x) \sim \frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{t \Delta} f(x)-f(x)\right) \frac{d t}{t^{1+s}}, \quad 0<s<1
$$

Definition of $(-\Delta)^{s}$ via the Fourier Transform

By the well-known properties of \mathcal{F} with respect to derivatives, we have that, for $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$,

$$
\mathcal{F}[-\Delta f](\xi)=|\xi|^{2} \mathcal{F}(f)(\xi), \quad \xi \in \mathbb{R}^{n}
$$

so it is reasonable to write something like

Definition of $(-\Delta)^{5}$ via the Fourier Transform

By the well-known properties of \mathcal{F} with respect to derivatives, we have that, for $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$,

$$
\mathcal{F}[-\Delta f](\xi)=|\xi|^{2} \mathcal{F}(f)(\xi), \quad \xi \in \mathbb{R}^{n}
$$

so it is reasonable to write something like

$$
(-\Delta)^{s} f(x) \sim \mathcal{F}^{-1}\left[|\cdot|^{2 s} \mathcal{F}(f)\right](x), \quad x \in \mathbb{R}^{n}, 0<s<1
$$

Definition of $(-\Delta)^{5}$ via the Fourier Transform

By the well-known properties of \mathcal{F} with respect to derivatives, we have that, for $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$,

$$
\mathcal{F}[-\Delta f](\xi)=|2 \pi \xi|^{2} \mathcal{F}(f)(\xi), \quad \xi \in \mathbb{R}^{n},
$$

so it is reasonable to write something like

$$
(-\Delta)^{s} f(x) \sim \mathcal{F}^{-1}\left[|2 \pi \cdot|^{2 s} \mathcal{F}(f)\right](x), \quad x \in \mathbb{R}^{n}, 0<s<1
$$

Theorem (Lemma 2.1. P. Stinga's PhD thesis)

Given $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $0<s<1$,

$$
\mathcal{F}^{-1}\left[|\cdot|^{2 s} \mathcal{F}(f)\right](x)=\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{t \Delta} f(x)-f(x)\right) \frac{d t}{t^{1+s}}, \quad x \in \mathbb{R}^{n}
$$

and this two functions coincide in a pointwise way with $(-\Delta)^{s} f(x)$ when the constant $\gamma(n, s)$ in its definition is given by

$$
\gamma(n, s)=\frac{4^{s} \Gamma(n / 2+s)}{-\pi^{n / 2} \Gamma(-s)}>0 .
$$

Everybody wants to be the fractional Laplacian

Let $x \in \mathbb{R}^{n}$. By Fubini's theorem and inverse Fourier formula,

$=\int_{\mathbb{R}^{n}}|\xi|^{2 s} \hat{f}(\xi) e^{i x \cdot \xi} d \xi=\mathcal{F}^{-1}\left[|\cdot|^{2 s} \mathcal{F}(f)\right](x)$.

Since $f \in S\left(\mathbb{R}^{n}\right)$, we have that

[^1]
Everybody wants to be the fractional Laplacian

Let $x \in \mathbb{R}^{n}$. By Fubini's theorem and inverse Fourier formula,

$$
\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{t \Delta} f(x)-f(x)\right) \frac{d t}{t^{1+s}}=\frac{1}{\Gamma(-s)} \int_{\mathbb{R}^{n}} \int_{0}^{\infty}\left(e^{-t|\xi|^{2}}-1\right) \frac{d t}{t^{1+s}} \hat{f}(\xi) e^{i x \cdot \tilde{\xi}} d \xi
$$

Since $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have that

and so Tonelli authorises us to apply Fubini's theorem.

Everybody wants to be the fractional Laplacian

Let $x \in \mathbb{R}^{n}$. By Fubini's theorem and inverse Fourier formula,

$$
\begin{aligned}
\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{t \Delta} f(x)-f(x)\right) \frac{d t}{t^{1+s}} & =\frac{1}{\Gamma(-s)} \int_{\mathbb{R}^{n}} \int_{0}^{\infty}\left(e^{-t|\xi|^{2}}-1\right) \frac{d t}{t^{1+s}} \hat{f}(\xi) e^{i x \cdot \xi} d \xi \\
& =\frac{1}{\Gamma(-s)} \int_{\mathbb{R}^{n}} \int_{0}^{\infty}\left(e^{-r}-1\right) \frac{d r}{r^{1+s}}|\xi|^{2 s} \hat{f}(y) e^{i x \cdot \xi} d y \\
& =\int_{\mathbb{R}^{n}}|\xi|^{2 s} \hat{f}(\xi) e^{i x \cdot \xi} d \xi=\mathcal{F}^{-1}\left[|\cdot|^{2 s} \mathcal{F}(f)\right](x)
\end{aligned}
$$

Since $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have that

and so Tonelli authorises us to apply Fubini's theorem.

Everybody wants to be the fractional Laplacian

Let $x \in \mathbb{R}^{n}$. By Fubini's theorem and inverse Fourier formula,

$$
\begin{aligned}
\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{t \Delta} f(x)-f(x)\right) \frac{d t}{t^{1+s}} & =\frac{1}{\Gamma(-s)} \int_{\mathbb{R}^{n}} \int_{0}^{\infty}\left(e^{-t|\xi|^{2}}-1\right) \frac{d t}{t^{1+s}} \hat{f}(\xi) e^{i x \cdot \xi} d \xi \\
& =\frac{1}{\Gamma(-s)} \int_{\mathbb{R}^{n}} \int_{0}^{\infty}\left(e^{-r}-1\right) \frac{d r}{r^{1+s}}|\xi|^{2 s} \hat{f}(y) e^{i x \cdot \xi} d y \\
& =\int_{\mathbb{R}^{n}}|\xi|^{2 s} \hat{f}(\xi) e^{i x \cdot \xi} d \xi=\mathcal{F}^{-1}\left[|\cdot|^{2 s} \mathcal{F}(f)\right](x)
\end{aligned}
$$

Since $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have that

and so Tonelli authorises us to apply Fubini's theorem.

Everybody wants to be the fractional Laplacian

Let $x \in \mathbb{R}^{n}$. By Fubini's theorem and inverse Fourier formula,

$$
\begin{aligned}
\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{t \Delta} f(x)-f(x)\right) \frac{d t}{t^{1+s}} & =\frac{1}{\Gamma(-s)} \int_{\mathbb{R}^{n}} \int_{0}^{\infty}\left(e^{-t|\xi|^{2}}-1\right) \frac{d t}{t^{1+s}} \hat{f}(\xi) e^{i x \cdot \xi} d \xi \\
& =\frac{1}{\Gamma(-s)} \int_{\mathbb{R}^{n}} \int_{0}^{\infty}\left(e^{-r}-1\right) \frac{d r}{r^{1+s}}|\xi|^{2 s} \hat{f}(y) e^{i x \cdot \xi} d y \\
& =\int_{\mathbb{R}^{n}}|\xi|^{2 s} \hat{f}(\xi) e^{i x \cdot \xi} d \xi=\mathcal{F}^{-1}\left[|\cdot|^{2 s} \mathcal{F}(f)\right](x)
\end{aligned}
$$

Since $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have that

$$
\int_{0}^{\infty}\left|e^{t \Delta} f(x)-f(x)\right| \frac{d t}{t^{1+s}}<\infty,
$$

and so Tonelli authorises us to apply Fubini's theorem.

Everybody wants to be the fractional Laplacian

Next, we will see that

$$
\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{t \Delta} f(x)-f(x)\right) \frac{d t}{t^{1+s}}=\frac{4^{s} \Gamma(n / 2+s)}{-\pi^{n / 2} \Gamma(-s)} \text { P.V. } \int_{\mathbb{R}^{n}} \frac{f(x)-f(z)}{|x-z|^{n+2 s}} d z, \quad x \in \mathbb{R}^{n} .
$$

$$
\text { Let } \varepsilon>0 \text {. Using that }\left\|W_{t}(x-\cdot)\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}=1 \text { for any } x \in \mathbb{R}^{n} \text {, }
$$

Everybody wants to be the fractional Laplacian

Next, we will see that

$$
\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{t \Delta} f(x)-f(x)\right) \frac{d t}{t^{1+s}}=\frac{4^{s} \Gamma(n / 2+s)}{-\pi^{n / 2} \Gamma(-s)} \text { P.V. } \int_{\mathbb{R}^{n}} \frac{f(x)-f(z)}{|x-z|^{n+2 s}} d z, \quad x \in \mathbb{R}^{n} .
$$

Let $\varepsilon>0$. Using that $\left\|W_{t}(x-\cdot)\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}=1$ for any $x \in \mathbb{R}^{n}$,

Everybody wants to be the fractional Laplacian

Next, we will see that

$$
\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{t \Delta} f(x)-f(x)\right) \frac{d t}{t^{1+s}}=\frac{4^{s} \Gamma(n / 2+s)}{-\pi^{n / 2} \Gamma(-s)} \text { P.V. } \int_{\mathbb{R}^{n}} \frac{f(x)-f(z)}{|x-z|^{n+2 s}} d z, \quad x \in \mathbb{R}^{n} .
$$

Let $\varepsilon>0$. Using that $\left\|W_{t}(x-\cdot)\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}=1$ for any $x \in \mathbb{R}^{n}$,

Everybody wants to be the fractional Laplacian

Next, we will see that

$$
\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{t \Delta} f(x)-f(x)\right) \frac{d t}{t^{1+s}}=\frac{4^{s} \Gamma(n / 2+s)}{-\pi^{n / 2} \Gamma(-s)} \text { P.V. } \int_{\mathbb{R}^{n}} \frac{f(x)-f(z)}{|x-z|^{n+2 s}} d z, \quad x \in \mathbb{R}^{n} .
$$

Let $\varepsilon>0$. Using that $\left\|W_{t}(x-\cdot)\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}=1$ for any $x \in \mathbb{R}^{n}$,

$$
\int_{0}^{\infty}\left(e^{t \Delta} f(x)-f(x)\right) \frac{d t}{t^{1+s}}=\int_{0}^{\infty} \int_{\mathbb{R}^{n}} W_{t}(x-z)(f(z)-f(x)) d z \frac{d t}{t^{1+s}}
$$

Everybody wants to be the fractional Laplacian

Next, we will see that

$$
\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{t \Delta} f(x)-f(x)\right) \frac{d t}{t^{1+s}}=\frac{4^{s} \Gamma(n / 2+s)}{-\pi^{n / 2} \Gamma(-s)} \text { P.V. } \int_{\mathbb{R}^{n}} \frac{f(x)-f(z)}{|x-z|^{n+2 s}} d z, \quad x \in \mathbb{R}^{n} .
$$

Let $\varepsilon>0$. Using that $\left\|W_{t}(x-\cdot)\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}=1$ for any $x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\int_{0}^{\infty}\left(e^{t \Delta} f(x)-f(x)\right) \frac{d t}{t^{1+s}} & =\int_{0}^{\infty} \int_{\mathbb{R}^{n}} W_{t}(x-z)(f(z)-f(x)) d z \frac{d t}{t^{1+s}} \\
& =I_{\varepsilon}+I_{\varepsilon}
\end{aligned}
$$

Everybody wants to be the fractional Laplacian

Using Fubini's theorem,

$$
\begin{aligned}
I_{\varepsilon} & =\int_{|x-z|>\varepsilon} \int_{0}^{\infty}(4 \pi t)^{-n / 2} e^{-\frac{|x-z|^{2}}{4 t}}(f(z)-f(x)) \frac{d t}{t^{1+s}} d z \\
& =\int_{x-z \mid>\varepsilon}(f(z)-f(x)) \int_{0}^{\infty}(4 \pi t)^{-n / 2} e^{-\frac{x-z^{2}}{4 t} \frac{d t}{t^{1+s}} d z} \\
& =\int_{|x-z|>\varepsilon}(f(x)-f(z)) \frac{4^{5} \Gamma(n / 2+s)}{-\pi^{n / 2}} \frac{1}{|x-z|^{n+2 s}} d z
\end{aligned}
$$

where we used the change of variables $r=\frac{|x-z|^{2}}{4 t}$.
Observe that I_{ε} converges absolutely for any $\varepsilon \gg 0$ since f is bounded, so the use of Fubini's theorem is licit.

Everybody wants to be the fractional Laplacian

Using Fubini's theorem,

$$
\begin{aligned}
I_{\varepsilon} & =\int_{|x-z|>\varepsilon} \int_{0}^{\infty}(4 \pi t)^{-n / 2} e^{-\frac{|x-z|^{2}}{4 t}}(f(z)-f(x)) \frac{d t}{t^{1+s}} d z \\
& =\int_{|x-z|>\varepsilon}(f(z)-f(x)) \int_{0}^{\infty}(4 \pi t)^{-n / 2} e^{-\frac{|x-z|^{2}}{4 t}} \frac{d t}{t^{1+s}} d z \\
& =\int_{|x-z|>\varepsilon}(f(x)-f(z)) \frac{4^{5} \Gamma(n / 2+s)}{-\pi^{n / 2}} \frac{1}{|x-z|^{n+2 s}} d z
\end{aligned}
$$

where we used the change of variables $r=\frac{|x-z|^{2}}{4 t}$.
Observe that I_{ε} converges absolutely for any $\varepsilon>0$ since f is bounded, so the use of Fubini's theorem is licit.

Everybody wants to be the fractional Laplacian

Using Fubini's theorem,

$$
\begin{aligned}
I_{\varepsilon} & =\int_{|x-z|>\varepsilon} \int_{0}^{\infty}(4 \pi t)^{-n / 2} e^{-\frac{|x-z|^{2}}{4 t}}(f(z)-f(x)) \frac{d t}{t^{1+s}} d z \\
& =\int_{|x-z|>\varepsilon}(f(z)-f(x)) \int_{0}^{\infty}(4 \pi t)^{-n / 2} e^{-\frac{|x-z|^{2}}{4 t}} \frac{d t}{t^{1+s}} d z \\
& =\int_{|x-z|>\varepsilon}(f(x)-f(z)) \frac{4^{s} \Gamma(n / 2+s)}{-\pi^{n / 2}} \frac{1}{|x-z|^{n+2 s}} d z
\end{aligned}
$$

where we used the change of variables $r=\frac{|x-z|^{2}}{4 t}$.
Observe that I_{ε} converges absolutely for any $\varepsilon>0$ since f is bounded, so the use of Fubini's theorem is licit.

Everybody wants to be the fractional Laplacian

Using Fubini's theorem,

$$
\begin{aligned}
I_{\varepsilon} & =\int_{|x-z|>\varepsilon} \int_{0}^{\infty}(4 \pi t)^{-n / 2} e^{-\frac{|x-z|^{2}}{4 t}}(f(z)-f(x)) \frac{d t}{t^{1+s}} d z \\
& =\int_{|x-z|>\varepsilon}(f(z)-f(x)) \int_{0}^{\infty}(4 \pi t)^{-n / 2} e^{-\frac{|x-z|^{2}}{4 t}} \frac{d t}{t^{1+s}} d z \\
& =\int_{|x-z|>\varepsilon}(f(x)-f(z)) \frac{4^{s} \Gamma(n / 2+s)}{-\pi^{n / 2}} \frac{1}{|x-z|^{n+2 s}} d z
\end{aligned}
$$

where we used the change of variables $r=\frac{|x-z|^{2}}{4 t}$.
Observe that I_{ε} converges absolutely for any $\varepsilon>0$ since f is bounded, so the use of Fubini's theorem is licit.

Everybody wants to be the fractional Laplacian

Using polar coordinates,

$$
I_{\varepsilon}=\int_{0}^{\infty} \int_{|x-z|<\varepsilon} W_{t}(x-z)(f(z)-f(x)) d z \frac{d t}{t^{1+s}}
$$

By Taylor's theorem, using the symmetry of the sphere,

$$
\begin{aligned}
\left|I I_{\varepsilon}\right| & \leq C_{n, \Delta f(x)} \int_{0}^{\varepsilon} r^{n+1} \int_{0}^{\infty} \frac{e^{-\frac{r^{2}}{4 t}}}{t^{n / 2+s}} \frac{d t}{t} \\
& =C_{n, \Delta f(x)} \int_{0}^{\varepsilon} r^{n+1} C_{n, s} r^{-n-2 s} d r=C_{n, \Delta f(x), s} \varepsilon^{2(1-s)}
\end{aligned}
$$

Everybody wants to be the fractional Laplacian

Using polar coordinates,

$$
\begin{aligned}
I_{\varepsilon} & =\int_{0}^{\infty} \int_{|x-z|<\varepsilon} W_{t}(x-z)(f(z)-f(x)) d z \frac{d t}{t^{1+s}} \\
& =\int_{0}^{\infty}(4 \pi t)^{-n / 2} \int_{0}^{\varepsilon} e^{-\frac{r^{2}}{4 t}} r^{n-1} \int_{\left|z^{\prime}\right|=1}\left(f\left(x+r z^{\prime}\right)-f(z)\right) d S\left(z^{\prime}\right) d r \frac{d t}{t^{1+s}} .
\end{aligned}
$$

By Taylor's theorem, using the symmetry of the sphere,

Everybody wants to be the fractional Laplacian

Using polar coordinates,

$$
\begin{aligned}
I I_{\varepsilon} & =\int_{0}^{\infty} \int_{|x-z|<\varepsilon} W_{t}(x-z)(f(z)-f(x)) d z \frac{d t}{t^{1+s}} \\
& =\int_{0}^{\infty}(4 \pi t)^{-n / 2} \int_{0}^{\varepsilon} e^{-\frac{r^{2}}{4 t}} r^{n-1} \int_{\left|z^{\prime}\right|=1}\left(f\left(x+r z^{\prime}\right)-f(z)\right) d S\left(z^{\prime}\right) d r \frac{d t}{t^{1+s}} .
\end{aligned}
$$

By Taylor's theorem, using the symmetry of the sphere,

$$
\int_{\left|z^{\prime}\right|=1}\left(f\left(x+r z^{\prime}\right)-f(z)\right) d S\left(z^{\prime}\right)=C_{n} r^{2} \Delta f(x)+O\left(r^{3}\right)
$$

Everybody wants to be the fractional Laplacian

Using polar coordinates,

$$
\begin{aligned}
I I_{\varepsilon} & =\int_{0}^{\infty} \int_{|x-z|<\varepsilon} W_{t}(x-z)(f(z)-f(x)) d z \frac{d t}{t^{1+s}} \\
& =\int_{0}^{\infty}(4 \pi t)^{-n / 2} \int_{0}^{\varepsilon} e^{-\frac{r^{2}}{4 t}} r^{n-1} \int_{\left|z^{\prime}\right|=1}\left(f\left(x+r z^{\prime}\right)-f(z)\right) d S\left(z^{\prime}\right) d r \frac{d t}{t^{1+s}} .
\end{aligned}
$$

By Taylor's theorem, using the symmetry of the sphere,

$$
\int_{\left|z^{\prime}\right|=1}\left(f\left(x+r z^{\prime}\right)-f(z)\right) d S\left(z^{\prime}\right)=C_{n} r^{2} \Delta f(x)+O\left(r^{3}\right)
$$

thus

$$
\left|I I_{\varepsilon}\right| \leq C_{n, \Delta f(x)} \int_{0}^{\varepsilon} r^{n+1} \int_{0}^{\infty} \frac{e^{-\frac{r^{2}}{4 t}}}{t^{n / 2+s}} \frac{d t}{t}
$$

Everybody wants to be the fractional Laplacian

Using polar coordinates,

$$
\begin{aligned}
I I_{\varepsilon} & =\int_{0}^{\infty} \int_{|x-z|<\varepsilon} W_{t}(x-z)(f(z)-f(x)) d z \frac{d t}{t^{1+s}} \\
& =\int_{0}^{\infty}(4 \pi t)^{-n / 2} \int_{0}^{\varepsilon} e^{-\frac{r^{2}}{4 t}} r^{n-1} \int_{\left|z^{\prime}\right|=1}\left(f\left(x+r z^{\prime}\right)-f(z)\right) d S\left(z^{\prime}\right) d r \frac{d t}{t^{1+s}} .
\end{aligned}
$$

By Taylor's theorem, using the symmetry of the sphere,

$$
\int_{\left|z^{\prime}\right|=1}\left(f\left(x+r z^{\prime}\right)-f(z)\right) d S\left(z^{\prime}\right)=C_{n} r^{2} \Delta f(x)+O\left(r^{3}\right)
$$

thus

$$
\begin{aligned}
\left|\left|I_{\varepsilon}\right|\right. & \leq C_{n, \Delta f(x)} \int_{0}^{\varepsilon} r^{n+1} \int_{0}^{\infty} \frac{e^{-\frac{r^{2}}{4 t}}}{t^{n / 2+s}} \frac{d t}{t} \\
& =C_{n, \Delta f(x)} \int_{0}^{\varepsilon} r^{n+1} C_{n, s} r^{-n-2 s} d r=C_{n, \Delta f(x), s^{2}} \varepsilon^{2(1-s)} .
\end{aligned}
$$

Everybody IS the fractional Laplacian

This proves that $I_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$, so

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{\mathbb{R}^{n}} W_{t}(x-z)(f(z)-f(x)) d z \frac{d t}{t^{1+s}}=\lim _{\varepsilon \rightarrow 0} I_{\varepsilon}+I I_{\varepsilon} \\
&=\frac{4^{s} \Gamma(n / 2+s)}{-\pi^{n / 2}} \text { P.V. } \int_{\mathbb{R}^{n}} \frac{f(x)-f(z)}{|x-z|^{n+2 s}} d z
\end{aligned}
$$

This kind of computations (bearing in mind the exact expression of the constant $\gamma(n, s)$) also prove the following pointwise convergence

$$
(-\Delta)^{s} f(x) \rightarrow-\Delta f(x), \quad x \in \mathbb{R}^{n} \text { as } s \rightarrow 0^{+}
$$

when $f \in C^{2}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ (observe that, in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ this is obvious by the definition via Fourier transform).

Everybody IS the fractional Laplacian

This proves that $I_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$, so

$$
\begin{aligned}
\int_{0}^{\infty} \int_{\mathbb{R}^{n}} W_{t}(x-z)(f(z)-f(x)) d z \frac{d t}{t^{1+s}}=\lim _{\varepsilon \rightarrow 0} I_{\varepsilon}+I_{\varepsilon} \\
=\frac{4^{s} \Gamma(n / 2+s)}{-\pi^{n / 2}} \text { P.V. } \int_{\mathbb{R}^{n}} \frac{f(x)-f(z)}{|x-z|^{n+2 s}} d z
\end{aligned}
$$

This kind of computations (bearing in mind the exact expression of the constant $\gamma(n, s)$) also prove the following pointwise convergence

$$
(-\Delta)^{s} f(x) \rightarrow-\Delta f(x), \quad x \in \mathbb{R}^{n} \text { as } s \rightarrow 0^{+}
$$

when $f \in C^{2}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ (observe that, in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ this is obvious by the definition via Fourier transform).

Everybody IS the fractional Laplacian

This proves that $I_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$, so

$$
\begin{aligned}
\int_{0}^{\infty} \int_{\mathbb{R}^{n}} W_{t}(x-z)(f(z)-f(x)) d z \frac{d t}{t^{1+s}}=\lim _{\varepsilon \rightarrow 0} I_{\varepsilon}+I_{\varepsilon} \\
=\frac{4^{s} \Gamma(n / 2+s)}{-\pi^{n / 2}} \text { P.V. } \int_{\mathbb{R}^{n}} \frac{f(x)-f(z)}{|x-z|^{n+2 s}} d z
\end{aligned}
$$

This kind of computations (bearing in mind the exact expression of the constant $\gamma(n, s)$) also prove the following pointwise convergence

when $f \in C^{2}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ (observe that, in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ this is obvious by the definition via Fourier transform).

Everybody IS the fractional Laplacian

This proves that $I_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$, so

$$
\begin{aligned}
\int_{0}^{\infty} \int_{\mathbb{R}^{n}} W_{t}(x-z) & (f(z)-f(x)) d z \frac{d t}{t^{1+s}}=\lim _{\varepsilon \rightarrow 0} I_{\varepsilon}+I I_{\varepsilon} \\
= & \frac{4^{s} \Gamma(n / 2+s)}{-\pi^{n / 2}} \text { P.V. } \int_{\mathbb{R}^{n}} \frac{f(x)-f(z)}{|x-z|^{n+2 s}} d z
\end{aligned}
$$

This kind of computations (bearing in mind the exact expression of the constant $\gamma(n, s)$) also prove the following pointwise convergence

$$
(-\Delta)^{s} f(x) \rightarrow-\Delta f(x), \quad x \in \mathbb{R}^{n} \text { as } s \rightarrow 0^{+}
$$

when $f \in C^{2}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ (observe that, in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ this is obvious by the definition via Fourier transform).

And last but not least

Extension Problem

Let $s \in(0,1)$ and consider $a=1-2 s$. We want to solve the extension problem

$$
\left\{\begin{array}{l}
L_{a} U(x, y)=\operatorname{div}_{x, y}\left(y^{a} \nabla_{x, y} U\right)=0, \quad x \in \mathbb{R}_{+}^{n}, y>0 \\
U(x, 0)=u(x) \\
U(x, y) \rightarrow 0 \text { as } y \rightarrow \infty
\end{array}\right.
$$

The previous system can be written as

$$
\left\{\begin{array}{l}
-\Delta_{x} U(x, y)=\left(\partial_{y y}+\frac{a}{y} \partial_{y}\right) U(x, y), \quad x \in \mathbb{R}_{+}^{n}, y>0 \tag{1}\\
U(x, 0)=U(x) \\
U(x, y) \rightarrow 0 \text { as } y \rightarrow \infty
\end{array}\right.
$$

Extension Problem

Let $s \in(0,1)$ and consider $a=1-2 s$. We want to solve the extension problem

$$
\left\{\begin{array}{l}
L_{a} U(x, y)=\operatorname{div}_{x, y}\left(y^{a} \nabla_{x, y} U\right)=0, \quad x \in \mathbb{R}_{+}^{n}, y>0, \\
U(x, 0)=u(x), \\
U(x, y) \rightarrow 0 \text { as } y \rightarrow \infty
\end{array}\right.
$$

The previous system can be written as

Extension Problem

Let $s \in(0,1)$ and consider $a=1-2 s$. We want to solve the extension problem

$$
\left\{\begin{array}{l}
L_{a} U(x, y)=\operatorname{div}_{x, y}\left(y^{a} \nabla_{x, y} U\right)=0, \quad x \in \mathbb{R}_{+}^{n}, y>0, \\
U(x, 0)=u(x), \\
U(x, y) \rightarrow 0 \text { as } y \rightarrow \infty .
\end{array}\right.
$$

The previous system can be written as

$$
\left\{\begin{array}{l}
-\Delta_{x} U(x, y)=\left(\partial_{y y}+\frac{a}{y} \partial_{y}\right) U(x, y), \quad x \in \mathbb{R}_{+}^{n}, y>0 \tag{1}\\
U(x, 0)=u(x), \\
U(x, y) \rightarrow 0 \text { as } y \rightarrow \infty
\end{array}\right.
$$

Extension Problem

Theorem 1 (Extension Theorem)

Let $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Then, the solution U to the extension problem (1) is given by

$$
\begin{equation*}
U(x, y)=\left(P_{s}(\cdot, y) \star u\right)(x)=\int_{\mathbb{R}^{n}} P_{s}(x-z, y) u(z) d z \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{s}(x, y)=\frac{\Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(s)} \frac{y^{2 s}}{\left(y^{2}+|x|^{2}\right)^{(n+2 s) / 2}} \tag{3}
\end{equation*}
$$

is the Poisson Kernel for the extension problem in the half-space \mathbb{R}_{+}^{n+1}.
in (2) one has

Extension Problem

Theorem 1 (Extension Theorem)

Let $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Then, the solution U to the extension problem (1) is given by

$$
\begin{equation*}
U(x, y)=\left(P_{s}(\cdot, y) \star u\right)(x)=\int_{\mathbb{R}^{n}} P_{s}(x-z, y) u(z) d z \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{s}(x, y)=\frac{\Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(s)} \frac{y^{2 s}}{\left(y^{2}+|x|^{2}\right)^{(n+2 s) / 2}} \tag{3}
\end{equation*}
$$

is the Poisson Kernel for the extension problem in the half-space \mathbb{R}_{+}^{n+1}. For U as in (2) one has

$$
\begin{equation*}
(-\Delta)^{s} u(x)=-\frac{2^{2 s-1} \Gamma(s)}{\Gamma(1-s)} \lim _{y \rightarrow 0^{+}} y^{1-2 s} \partial_{y} U(x, y) \tag{4}
\end{equation*}
$$

Extension Problem

PROOF

If we take a partial Fourier transform of (1)

$$
\begin{cases}\partial_{y y} \hat{U}(\xi, y)+\frac{1-2 s}{y} \partial_{y} \hat{U}(\xi, y)-4 \pi^{2}|\xi|^{2} \hat{U}(\xi, y)=0 & \text { in } \mathbb{R}_{+}^{n+1}, \\ \hat{U}(\xi, 0)=\hat{u}(\xi), \quad \hat{U}(\xi, y) \rightarrow 0 \text { as } y \rightarrow \infty, & x \in \mathbb{R}^{n} .\end{cases}
$$

then it can be compared with the generalized modified Bessel equation:

$$
y^{2} Y^{\prime \prime}+(1-2 \alpha) y Y^{\prime}(y)+\left[\beta^{2} \gamma^{2} y^{2 \gamma}+\left(\alpha-v^{2} \gamma^{2}\right)\right] Y(y)=0
$$

$$
\alpha=s, \gamma=1, v=s, \beta=2 \pi|\xi| .
$$

Extension Problem

PROOF

If we take a partial Fourier transform of (1)

$$
\begin{cases}\partial_{y y} \hat{U}(\xi, y)+\frac{1-2 s}{y} \partial_{y} \hat{U}(\xi, y)-4 \pi^{2}|\xi|^{2} \hat{U}(\xi, y)=0 & \text { in } \mathbb{R}_{+}^{n+1}, \\ \hat{U}(\xi, 0)=\hat{u}(\xi), \quad \hat{U}(\xi, y) \rightarrow 0 \text { as } y \rightarrow \infty, & x \in \mathbb{R}^{n} .\end{cases}
$$

If we fix $\xi \in \mathbb{R}^{n} \backslash\{0\}$ and $Y(y)=Y_{\xi}(y)=\hat{U}(\xi, y)$,

$$
\left\{\begin{array}{l}
y^{2} Y^{\prime \prime}(y)+(1-2 s) y Y^{\prime}(y)-4 \pi^{2}|\xi|^{2} y^{2} Y(y)=0 \quad y \text { in } \mathbb{R}_{+}, \\
Y(0)=\hat{u}(\xi), \quad y(y) \rightarrow 0 \text { as } y \rightarrow \infty,
\end{array}\right.
$$

then it can be compared with the generalized modified Bessel equation:

Extension Problem

PROOF

If we take a partial Fourier transform of (1)

$$
\begin{cases}\partial_{y y} \hat{U}(\xi, y)+\frac{1-2 s}{y} \partial_{y} \hat{U}(\xi, y)-4 \pi^{2}|\xi|^{2} \hat{U}(\xi, y)=0 & \text { in } \mathbb{R}_{+}^{n+1} \\ \hat{U}(\xi, 0)=\hat{u}(\xi), \quad \hat{U}(\xi, y) \rightarrow 0 \text { as } y \rightarrow \infty, & x \in \mathbb{R}^{n}\end{cases}
$$

If we fix $\xi \in \mathbb{R}^{n} \backslash\{0\}$ and $Y(y)=Y_{\xi}(y)=\hat{U}(\xi, y)$,

$$
\left\{\begin{array}{l}
y^{2} Y^{\prime \prime}(y)+(1-2 s) y Y^{\prime}(y)-4 \pi^{2}|\xi|^{2} y^{2} Y(y)=0 \quad y \text { in } \mathbb{R}_{+}, \\
Y(0)=\hat{u}(\xi), \quad y(y) \rightarrow 0 \text { as } y \rightarrow \infty,
\end{array}\right.
$$

then it can be compared with the generalized modified Bessel equation:

$$
\begin{gather*}
y^{2} Y^{\prime \prime}+(1-2 \alpha) y Y^{\prime}(y)+\left[\beta^{2} \gamma^{2} y^{2 \gamma}+\left(\alpha-v^{2} \gamma^{2}\right)\right] Y(y)=0 \tag{5}\\
\alpha=s, \gamma=1, v=s, \beta=2 \pi|\xi| .
\end{gather*}
$$

The general solutions of (5) are given by

$$
\hat{U}(\xi, y)=A y^{s} I_{s}(2 \pi|\xi| y)+B y^{s} K_{s}(2 \pi|\xi| y)
$$

where I_{s} and K_{s} are the Bessel functions of second and third kind, both independent solutions of the modified Bessel equation of order s

$$
z^{2} \phi^{\prime \prime}+z \phi^{\prime}-\left(z^{2}+s^{2}\right) \phi=0
$$

where
ϕ solution of $(6) \Longrightarrow Y(y)=y^{\alpha} \phi\left(\beta y^{\gamma}\right)$ solution of (5).

The general solutions of (5) are given by

$$
\hat{U}(\xi, y)=A y^{s} I_{s}(2 \pi|\xi| y)+B y^{s} K_{s}(2 \pi|\xi| y)
$$

where I_{s} and K_{s} are the Bessel functions of second and third kind,both independent solutions of the modified Bessel equation of order s

$$
\begin{equation*}
z^{2} \phi^{\prime \prime}+z \phi^{\prime}-\left(z^{2}+s^{2}\right) \phi=0 \tag{6}
\end{equation*}
$$

where

$$
\phi \text { solution of }(6) \Longrightarrow Y(y)=y^{\alpha} \phi\left(\beta y^{\gamma}\right) \text { solution of (5). }
$$

Extension Problem

The condition $\hat{U}(\xi, y) \rightarrow 0$ as $y \rightarrow \infty$ forces $A=0$. Using $/ s$ asymptotic behavior,

$$
\begin{aligned}
& B y^{s} K_{s}(2 \pi|\xi| y)=B \frac{\pi}{2} \frac{y^{s} I_{-s}(2 \pi|\xi| y)-y^{s} I_{s}(2 \pi|\xi| y)}{\sin \pi s} \\
& \rightarrow \frac{B \pi 2^{s-1}}{\Gamma(1-s) \sin \pi s}(2 \pi|\xi|)^{-s}=\left[\Gamma(s) \Gamma(s-1)=\frac{\pi}{\sin \pi s}\right] \\
& =B 2^{s-1} \Gamma(s)(2 \pi|\xi|)^{-s} .
\end{aligned}
$$

In order to fulfill the condition $\hat{U}(\xi, 0)=\hat{u}(\xi)$, we impose

$$
\begin{equation*}
\hat{U}(\xi, y)=\frac{(2 \pi|\xi|)^{s} \hat{u}(\xi)}{2^{s-1} \Gamma(s)} y^{s} K_{s}(2 \pi|\xi| y) \tag{7}
\end{equation*}
$$

Extension Problem

The condition $\hat{U}(\xi, y) \rightarrow 0$ as $y \rightarrow \infty$ forces $A=0$. Using I_{s} asymptotic behavior,

$$
\begin{aligned}
& B y^{s} K_{s}(2 \pi|\xi| y)=B \frac{\pi}{2} \frac{y^{s} I_{-s}(2 \pi|\xi| y)-y^{s} I_{s}(2 \pi|\xi| y)}{\sin \pi s} \\
& \rightarrow \frac{B \pi 2^{s-1}}{\Gamma(1-s) \sin \pi s}(2 \pi|\xi|)^{-s}=\left[\Gamma(s) \Gamma(s-1)=\frac{\pi}{\sin \pi s}\right] \\
& =B 2^{s-1} \Gamma(s)(2 \pi|\xi|)^{-s}
\end{aligned}
$$

In order to fulfill the condition $\hat{U}(\xi, 0)=\hat{u}(\xi)$, we impose

Extension Problem

The condition $\hat{U}(\xi, y) \rightarrow 0$ as $y \rightarrow \infty$ forces $A=0$. Using I_{s} asymptotic behavior,

$$
\begin{aligned}
& B y^{s} K_{s}(2 \pi|\xi| y)=B \frac{\pi}{2} \frac{y^{s} I_{-s}(2 \pi|\xi| y)-y^{s} I_{s}(2 \pi|\xi| y)}{\sin \pi s} \\
& \rightarrow \frac{B \pi 2^{s-1}}{\Gamma(1-s) \sin \pi s}(2 \pi|\xi|)^{-s}=\left[\Gamma(s) \Gamma(s-1)=\frac{\pi}{\sin \pi s}\right] \\
& =B 2^{s-1} \Gamma(s)(2 \pi|\xi|)^{-s}
\end{aligned}
$$

In order to fulfill the condition $\hat{U}(\xi, 0)=\hat{u}(\xi)$, we impose

$$
\begin{equation*}
\hat{U}(\xi, y)=\frac{(2 \pi|\xi|)^{s} \hat{u}(\xi)}{2^{s-1} \Gamma(s)} y^{s} K_{s}(2 \pi|\xi| y) . \tag{7}
\end{equation*}
$$

We want to prove

$$
U(x, y)=\left(P_{s}(\cdot, y) \star u\right)(x)
$$

Taking inverse Fourier transform and using (7), we have to show that

$$
\mathcal{F}_{\xi \rightarrow x}^{-1}\left(\frac{\left(2 \pi\left|\zeta^{\prime}\right|\right)^{s}}{2^{s-1} \Gamma(s)} y^{s} K_{s}(2 \pi|\xi| y)\right)=\frac{\Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(s)} \frac{y^{2 s}}{\left(y^{2}+|x|^{2}\right)^{(n+2 s) / 2}}
$$

Since the function in the left hand-side of (33) is spherically symmetric, proving (33) is equivalent to establishing the follow identity

$$
\mathcal{F}_{\xi \rightarrow x}\left(2 \pi^{s}|\xi|^{s} y^{s} K_{s}(2 \pi|\xi| y)\right)=\frac{\Gamma(n / 2+s)}{\pi^{n / 2}} \frac{y^{2 s}}{\left(y^{2}+|x|^{2}\right)^{(n+2 s) / 2}}
$$

(Hankel transform : $H \equiv H^{-1}$ for radial functions.)

We want to prove

$$
U(x, y)=\left(P_{s}(\cdot, y) \star u\right)(x)
$$

Taking inverse Fourier transform and using (7), we have to show that

$$
\mathcal{F}_{\xi \rightarrow x}^{-1}\left(\frac{(2 \pi|\xi|)^{s}}{2^{s-1} \Gamma(s)} y^{s} K_{s}(2 \pi|\xi| y)\right)=\frac{\Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(s)} \frac{y^{2 s}}{\left(y^{2}+|x|^{2}\right)^{(n+2 s) / 2}}
$$

Since the function in the left hand-side of (33) is spherically symmetric, proving (33) is equivalent to establishing the follow identity

(Hankel transform : $H \equiv H^{-1}$ for radial functions.)

We want to prove

$$
U(x, y)=\left(P_{s}(\cdot, y) \star u\right)(x)
$$

Taking inverse Fourier transform and using (7), we have to show that

$$
\mathcal{F}_{\xi \rightarrow x}^{-1}\left(\frac{(2 \pi|\xi|)^{s}}{2^{s-1} \Gamma(s)} y^{s} K_{s}(2 \pi|\xi| y)\right)=\frac{\Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(s)} \frac{y^{2 s}}{\left(y^{2}+|x|^{2}\right)^{(n+2 s) / 2}}
$$

Since the function in the left hand-side of (33) is spherically symmetric, proving (33) is equivalent to establishing the follow identity

$$
\mathcal{F}_{\xi \rightarrow x}\left(2 \pi^{s}|\xi|^{s} y^{s} K_{s}(2 \pi|\xi| y)\right)=\frac{\Gamma(n / 2+s)}{\pi^{n / 2}} \frac{y^{2 s}}{\left(y^{2}+|x|^{2}\right)^{(n+2 s) / 2}}
$$

(Hankel transform : $H \equiv H^{-1}$ for radial functions.)

We want to prove

$$
U(x, y)=\left(P_{s}(\cdot, y) \star u\right)(x)
$$

Taking inverse Fourier transform and using (7), we have to show that

$$
\mathcal{F}_{\xi \rightarrow x}^{-1}\left(\frac{(2 \pi|\xi|)^{s}}{2^{s-1} \Gamma(s)} y^{s} K_{s}(2 \pi|\xi| y)\right)=\frac{\Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(s)} \frac{y^{2 s}}{\left(y^{2}+|x|^{2}\right)^{(n+2 s) / 2}}
$$

Since the function in the left hand-side of (33) is spherically symmetric, proving (33) is equivalent to establishing the follow identity

$$
\mathcal{F}_{\xi \rightarrow x}\left(2 \pi^{s}|\xi|^{s} y^{s} K_{s}(2 \pi|\xi| y)\right)=\frac{\Gamma(n / 2+s)}{\pi^{n / 2}} \frac{y^{2 s}}{\left(y^{2}+|x|^{2}\right)^{(n+2 s) / 2}}
$$

(Hankel transform : $H \equiv H^{-1}$ for radial functions.)

Theorem 2 (Fourier-Bessel Representation)

Let $u(x)=f(|x|)$, and suppose that

$$
t \mapsto t^{n / 2} f(t) J_{n / 2-1}(2 \pi|\xi| t) \in L^{1}\left(\mathbb{R}^{n}\right)
$$

Then,

$$
\hat{u}(\xi)=2 \pi|\xi|^{-n / 2+1} \int_{0}^{\infty} t^{n / 2} f(t) J_{n / 2-1}(2 \pi|\xi| t) d t .
$$

Then, the latter identity (33) is equivalent to

Theorem 2 (Fourier-Bessel Representation)

Let $u(x)=f(|x|)$, and suppose that

$$
t \mapsto t^{n / 2} f(t) J_{n / 2-1}(2 \pi|\xi| t) \in L^{1}\left(\mathbb{R}^{n}\right) .
$$

Then,

$$
\hat{u}(\xi)=2 \pi|\xi|^{-n / 2+1} \int_{0}^{\infty} t^{n / 2} f(t) J_{n / 2-1}(2 \pi|\xi| t) d t .
$$

Then, the latter identity (33) is equivalent to

$$
\begin{gathered}
\frac{2^{2} \pi^{s+1} y^{s}}{|x|^{n / 2-1}} \int_{0}^{\infty} t^{n / 2+s} K_{s}(2 \pi y t) J_{n / 2-1}(2 \pi|\xi| t) d t \\
\quad=\frac{\Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(s)} \frac{y^{2 s}}{\left(y^{2}+|x|^{2}\right)^{(n+2 s) / 2}} .
\end{gathered}
$$

Let's establish

$$
(-\Delta)^{s} u(x)=-\frac{2^{2 s-1} \Gamma(s)}{\Gamma(1-s)} \lim _{y \rightarrow 0^{+}} y^{1-2 s} \partial_{y} U(x, y)
$$

Recall that $\left(\widehat{-\Delta)^{s}} u(\xi)=(2 \pi|\xi|)^{2 s} \hat{u}(\xi)\right.$. Using the equalities

$$
\begin{aligned}
& K_{s}^{\prime}(z)=\frac{5}{z} K_{s}(z)-K_{s+1}(z) \\
& -K_{s+1}(z)=-K_{s-1}(z)=-K_{1-s}(z),
\end{aligned}
$$

we obtain

$$
y^{1-2 s} \partial_{y} \hat{U}(\xi, y)=\frac{(2 \pi|\xi|)^{s+1} \hat{u}(\xi)}{2^{2 s-1} \Gamma(s)} y^{1-s} K_{1-s}(2 \pi|\xi| y) .
$$

Let's establish

$$
(-\Delta)^{s} u(x)=-\frac{2^{2 s-1} \Gamma(s)}{\Gamma(1-s)} \lim _{y \rightarrow 0^{+}} y^{1-2 s} \partial_{y} U(x, y)
$$

Recall that $\widehat{(-\Delta)^{s}} u(\xi)=(2 \pi|\xi|)^{2 s} \hat{u}(\xi)$. Using the equalities

$$
K_{s}^{\prime}(z)=\frac{s}{z} K_{s}(z)-K_{s+1}(z)
$$

we obtain

Let's establish

$$
(-\Delta)^{s} u(x)=-\frac{2^{2 s-1} \Gamma(s)}{\Gamma(1-s)} \lim _{y \rightarrow 0^{+}} y^{1-2 s} \partial_{y} U(x, y)
$$

Recall that $\widehat{(-\Delta)^{s}} u(\xi)=(2 \pi|\xi|)^{2 s} \hat{u}(\xi)$. Using the equalities

$$
K_{s}^{\prime}(z)=\frac{s}{z} K_{s}(z)-K_{s+1}(z)
$$

and

$$
\frac{2 s}{z} K_{s}(z)-K_{s+1}(z)=-K_{s-1}(z)=-K_{1-s}(z),
$$

we obtain

Let's establish

$$
(-\Delta)^{s} u(x)=-\frac{2^{2 s-1} \Gamma(s)}{\Gamma(1-s)} \lim _{y \rightarrow 0^{+}} y^{1-2 s} \partial_{y} U(x, y)
$$

Recall that $\widehat{(-\Delta)^{s}} u(\xi)=(2 \pi|\xi|)^{2 s} \hat{u}(\xi)$. Using the equalities

$$
K_{s}^{\prime}(z)=\frac{s}{z} K_{s}(z)-K_{s+1}(z)
$$

and

$$
\frac{2 s}{z} K_{s}(z)-K_{s+1}(z)=-K_{s-1}(z)=-K_{1-s}(z),
$$

we obtain

$$
y^{1-2 s} \partial_{y} \hat{U}(\xi, y)=\frac{(2 \pi|\xi|)^{s+1} \hat{u}(\xi)}{2^{2 s-1} \Gamma(s)} y^{1-s} K_{1-s}(2 \pi|\xi| y)
$$

As before, we have

$$
\lim _{y \rightarrow 0^{+}} y^{1-s} K_{1-s}(2 \pi|\xi| y)=2^{-s} \Gamma(1-s)(2 \pi|\xi|)^{s-1}
$$

We finally reach the conclusion

Remark 1 (Alternative proof of (4))

Using that

$$
\int_{\mathbb{R}^{n}} P_{s}(x, y) d x=1,
$$

we will show another proof.

As before, we have

$$
\lim _{y \rightarrow 0^{+}} y^{1-s} K_{1-s}(2 \pi|\xi| y)=2^{-s} \Gamma(1-s)(2 \pi|\xi|)^{s-1}
$$

We finally reach the conclusion

$$
\lim _{y \rightarrow 0^{+}} y^{1-2 s} \partial_{y} \hat{O}(\xi, y)=-\frac{\Gamma(1-s)}{2^{2 s-1} \Gamma(s)}(2 \pi|\xi|)^{2 s} \hat{u}(\xi) .
$$

Remark 1 (Alternative proof of (4))
Using that

we will show another proof.

As before, we have

$$
\lim _{y \rightarrow 0^{+}} y^{1-s} K_{1-s}(2 \pi|\xi| y)=2^{-s} \Gamma(1-s)(2 \pi|\xi|)^{s-1}
$$

We finally reach the conclusion

$$
\lim _{y \rightarrow 0^{+}} y^{1-2 s} \partial_{y} \hat{U}(\xi, y)=-\frac{\Gamma(1-s)}{2^{2 s-1} \Gamma(s)}(2 \pi|\xi|)^{2 s} \hat{u}(\xi) .
$$

Remark 1 (Alternative proof of (4))

Using that

$$
\int_{\mathbb{R}^{n}} P_{s}(x, y) d x=1, \quad y>0
$$

we will show another proof.

Let $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and consider the solution $U(x, y)=\left(P_{s}(\cdot, y) \star u\right)(x)$ to the extension problem (1). We can write

$$
U(x, y)=\frac{\Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(s)} \int_{\mathbb{R}^{n}} \frac{u(z)-u(x)}{\left(y^{2}+|z-x|^{2}\right)^{(n+2 s) / 2}} d z+u(x)
$$

Differentiating both sides respect to y we obtain

Let $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and consider the solution $U(x, y)=\left(P_{s}(\cdot, y) \star u\right)(x)$ to the extension problem (1). We can write

$$
U(x, y)=\frac{\Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(s)} \int_{\mathbb{R}^{n}} \frac{u(z)-u(x)}{\left(y^{2}+|z-x|^{2}\right)^{(n+2 s) / 2}} d z+u(x) .
$$

Differentiating both sides respect to y we obtain

Let $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and consider the solution $U(x, y)=\left(P_{s}(\cdot, y) \star u\right)(x)$ to the extension problem (1). We can write

$$
U(x, y)=\frac{\Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(s)} \int_{\mathbb{R}^{n}} \frac{u(z)-u(x)}{\left(y^{2}+|z-x|^{2}\right)^{(n+2 s) / 2}} d z+u(x) .
$$

Differentiating both sides respect to y we obtain

$$
y^{1-2 s} \partial_{y} U(x, y)=2 s \frac{\Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(s)} \int_{\mathbb{R}^{n}} \frac{u(z)-u(x)}{\left(y^{2}+|z-x|^{2}\right)^{(n+2 s) / 2}} d z+O\left(y^{2}\right)
$$

Now, letting $y \rightarrow 0^{+}$and using the Lebesgue dominated convergence theorem, we thus find

$$
\begin{aligned}
\lim _{y \rightarrow 0^{+}} y^{1-2 s} \partial_{y} U(x, y) & =2 s \frac{\Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(s)} \text { P.V. } \int_{\mathbb{R}^{n}} \frac{u(z)-u(x)}{\left(|z-x|^{2}\right)^{(n+2 s) / 2}} d z \\
& =-2 s \frac{\Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(s)} \gamma(n, s)^{-1}(-\Delta)^{s} u(x)
\end{aligned}
$$

Now, letting $y \rightarrow 0^{+}$and using the Lebesgue dominated convergence theorem, we thus find

$$
\begin{aligned}
\lim _{y \rightarrow 0^{+}} y^{1-2 s} \partial_{y} U(x, y) & =2 s \frac{\Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(s)} \text { P.V. } \int_{\mathbb{R}^{n}} \frac{u(z)-u(x)}{\left(|z-x|^{2}\right)^{(n+2 s) / 2}} d z \\
& =-2 s \frac{\Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(s)} \gamma(n, s)^{-1}(-\Delta)^{s} u(x)
\end{aligned}
$$

Finally, recall that

$$
\gamma(n, s)=\frac{s 2^{2 s} \Gamma(n / 2+s)}{\pi^{n / 2} \Gamma(1-s)} .
$$

La exposición está basada en:

1. L. Caffarelli y L. Silvestre, An extension problem related to the fractional Laplacean, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260;
2. N. Garofalo, Fractional thoughts, arXiv:1712.03347v3;
3. M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal. 20 (2017), no. 1, 7-51;
4. L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), no. 1, 67-112 y Tesis Doctoral, 2005 (con el mismo nombre).
5. P. R. Stinga, Fractional powers of second order partial differential operators: extension problem and regularity theory, Tesis Doctoral, 2010;
6. P. R. Stinga y J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations 35 (2010), no. 11, 2092-2122.

Thanks for your attention Eskerrik asko zuen arretarengatik

[^0]: ${ }^{1}$ International Women's Day

[^1]: and so Tonelli authorises us to apply Fubini's theorem.

