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The working space

We are going to work with the space S (Rn) of L. Schwartz’ rapidly decreasing
functions.

S (Rn) is the space C∞(Rn) of functions that

‖f ‖p = sup
|α|≤p

sup
x∈Rn

(1 + |x |2)p/2 |∂αf (x)| < ∞ p ∈N∪ {0}

This space endowed with the metric topology

d(f , g) =
∞

∑
p=0

2−p
‖f − g‖p

1 + ‖f − g‖p
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First definition motivation

Let f ∈ C2(a, b), then for every x ∈ (a, b) one has

−f ′′(x) = ĺım
y→0

2f (x)− f (x + y)− f (x − y)

y2

If we introduce the spherical and solid averaging operators

My f (x) =
f (x + y) + f (x − y)

2
Ay f (x) =

1

2y

ˆ x+y

x−y
f (t) dt

then we can reformulate −f ′′(x) like this

−f ′′(x) = 2 ĺım
y→0

f (x)−My f (x)

y2
= 6 ĺım

y→0

f (x)−Ay f (x)

y2
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First definition motivation

Thus, if we bear in mind that −∆f = −
n

∑
k=1

∂2f

∂x2k
and making an extension of the

spherical and solid averaging operators

My f (x) =
1

σ(n−1)r
(n−1)

ˆ
S(x,r )
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ωnrn
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B(x,r )
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Finally, as a generalization of the operator (−∆)f one can define (−∆)s f as an
Rn non local operator. If we have u ∈ S (Rn), we define:

(−∆)su(x) =
γ(n, s)

2

ˆ
Rn

2u(x)− u(x + y)− u(x − y)

|y |n+2s
dy , s ∈ (0, 1)

Observation 1: γ(n, s) is, at this moment, an unknown constant

Observation 2: this is a linear operator.

Observation 3: since as s → 1− the fractional Laplacean tends (at least, formally
right now) to (−∆), one might surmise that in the regime 1/2 < s < 1 the
operator (−∆)s should display properties closer to those of the classical
Laplacian, whereas since (−∆)s → I as s → 0+, the stronger discrepancies
might present themselves in the range 0 < s < 1/2
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(−∆u(x)) is well-defined

It is important to observe that the integral in the right-hand side is convergent. In
order to see this, it suffices to write:

ˆ
Rn

2u(x)− u(x + y)− u(x − y)

|y |n+2s
dy =

ˆ
|y |≤1

2u(x)− u(x + y)− u(x − y)

|y |n+2s
dy+

+

ˆ
|y |≥1

2u(x)− u(x + y)− u(x − y)

|y |n+2s
dy = (a) + (b)

Starting with (a):

|(a)| ≤
ˆ
|y |≤1

|2u(x)− u(x + y)− u(x − y)|
|y |n+2s

dy

Using Taylor 2u(x)− u(x + y)− u(x − y) = −〈∇2u(x)y , y〉+ o(|x |3)
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Therefore

=

ˆ
|y |≤1

|〈∇2u(x)y , y〉+ o(|x |3)|
|y |n+2s

dy

Using Cauchy-Schwarz inequality

≤
ˆ
|y |≤1

|∇2u(x)y ||y |+ |o(|x |3)|
|y |n+2s

dy ≤
ˆ
|y |≤1

|∇2u(x)||y |2 + |o(|x |3)|
|y |n+2s

dy

= C

ˆ
|y |≤1

1

|y |n−2(1−s)
dy =

ˆ 1

0

ˆ
Sn−1

1

r1−2s
dσ(ω) dr < ∞

Now, for (b):∣∣∣∣∣
ˆ
|y |≥1

2u(x)− u(x + y)− u(x − y)

|y |n+2s
dy

∣∣∣∣∣ ≤ 4‖u‖L∞(Rn)

ˆ
|y |≥1

1

|y |n+2s
dy < ∞
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Translations and dilations

Let h ∈ Rn and λ > 0, the translation and dilation operators are defined,
respectively, by

τhf (x) = f (x + h); δλf (x) = f (λx)

for every f : Rn → R and every x ∈ Rn

Proposition 1

Let u ∈ S(Rn), then for every h ∈ Rn and λ > 0 we have

(−∆)s(τhu) = τh((−∆)su)

and
(−∆)s(δλu) = λ2sδλ((−∆)su)

In particular, (−∆)s is a homogeneous operator of order 2s.
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Orthogonal group

Recall that the orthogonal group is

O(n) = {T ∈ Mn(R) : T tT = TT t = I}

The usual Laplacian satisfies ∆(u ◦ T ) = ∆u ◦ T for every T ∈ O(n).

What about the fractional Laplacian?

We say that a function f : Rn → R has spherical symmetry if f (x) = f ∗(|x |) for
some f ∗ : Rn → R or, equivalently, if f (Tx) = f (x) for every T ∈ O(n) and
every x ∈ R

Proposition 2

Let u ∈ S(Rn) (actually, it is enough that u ∈ C2(Rn) ∩ L∞(Rn)) be a function
with spherical symmetry. Then, (−∆)s has spherical symmetry.
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Orthogonal group (Cont.)

PROOF.-

Let’s see that (−∆)su(Tx) = (−∆)su(x) for each T ∈ O(n) and each x ∈ Rn

(−∆)su(Tx) =
γ(n, s)

2

ˆ
Rn

2u∗(|Tx |)− u∗(|Tx + y |)− u∗(|Tx − y |)
|y |2n+s

dy

=
γ(n, s)

2

ˆ
Rn

2u∗(|x |)− u∗(|x + T ty |)− u∗(|x − T ty |)
|y |2n+s

dy

Change of variable: z = T ty

=
γ(n, s)

2

ˆ
Rn

2u∗(|x |)− u∗(|x + z |)− u∗(|x − z |)
|Tz |2n+s

dz

=
γ(n, s)

2

ˆ
Rn

2u∗(|x |)− u∗(|x + z |)− u∗(|x − z |)
|z |2n+s
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Alternative expression for the fractional Laplacian

Now we find a new pointwise expression for the fractional Laplacian which will be
useful when we prove the equivalence of the different definitions.

Theorem

Let u ∈ S(Rn), then

(−∆)su(x) = γ(n, s)P.V .

ˆ
Rn

u(x)− u(y)

|x − y |n+2s
dy

where P.V. means the Cauchy’s principal value, i.e.

P.V .

ˆ
Rn

u(x)− u(y)

|x − y |n+2s
dy = lim

ε→0+

ˆ
|x−y |>ε

u(x)− u(y)

|x − y |n+2s
dy
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Alternative expression for the fractional Laplacian (Cont.)

PROOF.-

(−∆)su(x) =
1

2
lim

ε→0+

ˆ
|y |>ε

2u(x)− u(x + y)− u(x − y)

|y |n+2s
dy

=
1

2
lim

ε→0+

ˆ
|y |>ε

u(x)− u(x + y)

|y |n+2s
dy +

1

2
lim

ε→0+

ˆ
|y |>ε

u(x)− u(x − y)

|y |n+2s
dy

Changes of variables:

x + y = z in the first integral
x − y = z in the second integral

=
1

2
lim

ε→0+

ˆ
|z−x |>ε

u(x)− u(z)

|z − x |n+2s
dz +

1

2
lim

ε→0+

ˆ
|x−z |>ε

u(x)− u(z)

|x − z |n+2s
dz

= lim
ε→0+

ˆ
|x−z |>ε

u(x)− u(z)

|x − z |n+2s
dz
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Another two definitions of the
fractional Laplacian
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Fourier transform

We recall the definition of the Fourier transform, F , of a function f ∈ S(Rn):

F (f )(ξ) = f̂ (ξ) = (2π)−n/2
ˆ

Rn
f (x)e−ix ·ξdx , ξ ∈ Rn,

so that

f (x) = F−1 ◦ F (f )(x) = (2π)−n/2
ˆ

Rn
f̂ (ξ)e ix ·ξdξ, x ∈ Rn.
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Definition of (−∆)s via the heat semigroup et∆

We will define (−∆)s f in terms of the heat semigroup et∆, which is nothing but
an operator such that maps every function f ∈ S(Rn) to the solution of the heat
equation with initial data given by f :{

vt = ∆v , (x , t) ∈ Rn × (0, ∞)

v(x , 0) = f (x), x ∈ Rn.

Using Fourier transform and its inverse and with a bit of magic, we can write

et∆f (x) := v(x , t) = (2π)−n/2
ˆ

Rn
e−t|ξ|

2
f̂ (ξ)e ix ·ξdξ =

ˆ
Rn

Wt(x − z)f (z)dz ,

where

Wt(x) = (4πt)−n/2e−
|x |2
4t , x ∈ Rn,

is the Gauss-Weierstrass kernel.
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Definition of (−∆)s via the heat semigroup et∆

Inspired by the following numerical identity: for λ > 0,

λs =
1

Γ(−s)

ˆ ∞

0
(e−tλ − 1)

dt

t1+s
, 0 < s < 1,

where

Γ(−s) =
ˆ ∞

0
(e−r − 1)

dr

r1+s
< 0;

we can think of (−∆)s as the following operator

(−∆)s f (x) ∼ 1

Γ(−s)

ˆ ∞

0
(et∆f (x)− f (x))

dt

t1+s
, 0 < s < 1.
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Definition of (−∆)s via the Fourier Transform

By the well-known properties of F with respect to derivatives, we have that, for
f ∈ S(Rn),

F [−∆f ](ξ) = |ξ|2F (f )(ξ), ξ ∈ Rn,

so it is reasonable to write something like

(−∆)s f (x) ∼ F−1[| · |2sF (f )](x), x ∈ Rn, 0 < s < 1.
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∼ is =

Theorem (Lemma 2.1. P. Stinga’s PhD thesis)

Given f ∈ S(Rn) and 0 < s < 1,

F−1[| · |2sF (f )](x) = 1

Γ(−s)

ˆ ∞

0
(et∆f (x)− f (x))

dt

t1+s
, x ∈ Rn

and this two functions coincide in a pointwise way with (−∆)s f (x) when the
constant γ(n, s) in its definition is given by

γ(n, s) =
4sΓ(n/2 + s)

−πn/2Γ(−s)
> 0.
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Everybody wants to be the fractional Laplacian

Let x ∈ Rn. By Fubini’s theorem and inverse Fourier formula,

1

Γ(−s)

ˆ ∞

0
(et∆f (x)− f (x))

dt

t1+s
=

1

Γ(−s)

ˆ
Rn

ˆ ∞

0
(e−t|ξ|

2 − 1)
dt

t1+s
f̂ (ξ)e ix ·ξdξ

=
1

Γ(−s)

ˆ
Rn

ˆ ∞

0
(e−r − 1)

dr

r1+s
|ξ|2s f̂ (y)e ix ·ξdy

=

ˆ
Rn
|ξ|2s f̂ (ξ)e ix ·ξdξ = F−1[| · |2sF (f )](x).

Since f ∈ S(Rn), we have that

ˆ ∞

0
|et∆f (x)− f (x)| dt

t1+s
< ∞,

and so Tonelli authorises us to apply Fubini’s theorem.
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Everybody wants to be the fractional Laplacian

Next, we will see that

1

Γ(−s)

ˆ ∞

0
(et∆f (x)− f (x))

dt

t1+s
=

4sΓ(n/2 + s)

−πn/2Γ(−s)
P.V.
ˆ

Rn

f (x)− f (z)

|x − z |n+2s
dz , x ∈ Rn.

Let ε > 0. Using that ‖Wt(x − ·)‖L1(Rn) = 1 for any x ∈ Rn,

ˆ ∞

0
(et∆f (x)− f (x))

dt

t1+s
=

ˆ ∞

0

ˆ
Rn

Wt (x − z)(f (z)− f (x))dz
dt

t1+s

= Iε + IIε.
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Everybody wants to be the fractional Laplacian

Using Fubini’s theorem,

Iε =

ˆ
|x−z |>ε

ˆ ∞

0
(4πt)−n/2e−

|x−z |2
4t (f (z)− f (x))

dt

t1+s
dz

=

ˆ
|x−z |>ε

(f (z)− f (x))

ˆ ∞

0
(4πt)−n/2e−

|x−z |2
4t

dt

t1+s
dz

=

ˆ
|x−z |>ε

(f (x)− f (z))
4sΓ(n/2 + s)

−πn/2
1

|x − z |n+2s
dz

where we used the change of variables r = |x−z |2
4t .

Observe that Iε converges absolutely for any ε > 0 since f is bounded, so the use
of Fubini’s theorem is licit.
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Everybody wants to be the fractional Laplacian

Using polar coordinates,

IIε =

ˆ ∞

0

ˆ
|x−z |<ε

Wt (x − z)(f (z)− f (x))dz
dt

t1+s

=

ˆ ∞

0
(4πt)−n/2

ˆ ε

0
e−

r2

4t rn−1
ˆ
|z ′ |=1

(f (x + rz ′)− f (z))dS(z ′)dr
dt

t1+s
.

By Taylor’s theorem, using the symmetry of the sphere,

ˆ
|z ′ |=1

(f (x + rz ′)− f (z))dS(z ′) = Cnr
2∆f (x) +O(r3),

thus

|IIε| ≤ Cn,∆f (x)

ˆ ε

0
rn+1

ˆ ∞

0

e−
r2

4t

tn/2+s

dt

t

= Cn,∆f (x)

ˆ ε

0
rn+1Cn,s r

−n−2sdr = Cn,∆f (x),s ε2(1−s).
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Everybody IS the fractional Laplacian

This proves that IIε → 0 as ε→ 0, so
ˆ ∞

0

ˆ
Rn

Wt (x − z)(f (z)− f (x))dz
dt

t1+s
= ĺım

ε→0
Iε + IIε

=
4sΓ(n/2 + s)

−πn/2 P.V.
ˆ

Rn

f (x)− f (z)

|x − z |n+2s
dz

. .
^

This kind of computations (bearing in mind the exact expression of the constant
γ(n, s)) also prove the following pointwise convergence

(−∆)s f (x)→ −∆f (x), x ∈ Rn as s → 0+,

when f ∈ C2(Rn) ∩ L∞(Rn) (observe that, in S(Rn) this is obvious by the
definition via Fourier transform).
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And last but not least
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Extension Problem

Let s ∈ (0, 1) and consider a = 1− 2s. We want to solve the extension problem LaU(x , y) = divx,y (ya∇x,yU) = 0, x ∈ Rn
+, y > 0,

U(x , 0) = u(x),
U(x , y)→ 0 as y → ∞.

The previous system can be written as
−∆xU(x , y) =

(
∂yy +

a
y ∂y

)
U(x , y), x ∈ Rn

+, y > 0,

U(x , 0) = u(x),
U(x , y)→ 0 as y → ∞.

(1)
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Extension Problem

Theorem 1 (Extension Theorem)

Let u ∈ S(Rn). Then, the solution U to the extension problem (1) is given by

U(x , y) = (Ps(·, y) ? u)(x) =
ˆ

Rn
Ps(x − z , y)u(z) dz , (2)

where

Ps(x , y) =
Γ(n/2 + s)

πn/2Γ(s)
y2s

(y2 + |x |2)(n+2s)/2
(3)

is the Poisson Kernel for the extension problem in the half-space Rn+1
+ . For U as

in (2) one has

(−∆)su(x) = −22s−1Γ(s)
Γ(1− s)

ĺım
y→0+

y1−2s∂yU(x , y). (4)
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Extension Problem

PROOF
If we take a partial Fourier transform of (1){

∂yy Û(ξ, y) + 1−2s
y ∂y Û(ξ, y)− 4π2|ξ|2Û(ξ, y) = 0 in Rn+1

+ ,

Û(ξ, 0) = û(ξ), Û(ξ, y)→ 0 as y → ∞, x ∈ Rn.

If we fix ξ ∈ Rn \ {0} and Y (y) = Yξ(y) = Û(ξ, y),{
y2Y

′′
(y) + (1− 2s)yY

′
(y)− 4π2|ξ|2y2Y (y) = 0 y in R+,

Y (0) = û(ξ), y(y)→ 0 as y → ∞,

then it can be compared with the generalized modified Bessel equation:

y2Y
′′
+ (1− 2α)yY

′
(y) + [β2γ2y2γ + (α− ν2γ2)]Y (y) = 0 (5)

α = s, γ = 1, ν = s, β = 2π|ξ|.

Group 3 Fractional Laplacian VIII Escuela-Taller 29 / 40



Extension Problem

PROOF
If we take a partial Fourier transform of (1){
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The general solutions of (5) are given by

Û(ξ, y) = Ay s Is(2π|ξ|y) + By sKs(2π|ξ|y)

where Is and Ks are the Bessel functions of second and third kind,both
independent solutions of the modified Bessel equation of order s

z2φ
′′
+ zφ

′ − (z2 + s2)φ = 0 (6)

where

φ solution of (6) =⇒ Y (y) = yαφ(βyγ) solution of (5).
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φ solution of (6) =⇒ Y (y) = yαφ(βyγ) solution of (5).

Group 3 Fractional Laplacian VIII Escuela-Taller 30 / 40



Js(z) = ∑∞
k=0(−1)k

(z/2)s+2k

Γ(k + 1)Γ(k + s + 1)
, |z | < ∞, |arg(z)| < π,

Is(z) = ∑∞
k=0

(z/2)s+2k

Γ(k + 1)Γ(k + s + 1)
, |z | < ∞, |arg(z)| < π,

Ks(z) =
π

2

I−s(z)− Is(z)

sin πs
, |arg(z)| < π.
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Extension Problem

The condition Û(ξ, y)→ 0 as y → ∞ forces A = 0. Using Is asymptotic behavior,

By sKs(2π|ξ|y) = B
π

2

y s I−s(2π|ξ|y)− y s Is(2π|ξ|y)
sin πs

→ Bπ2s−1

Γ(1− s) sin πs
(2π|ξ|)−s =

[
Γ(s)Γ(s − 1) =

π

sin πs

]
= B2s−1Γ(s)(2π|ξ|)−s .

In order to fulfill the condition Û(ξ, 0) = û(ξ), we impose

Û(ξ, y) =
(2π|ξ|)s û(ξ)

2s−1Γ(s)
y sKs(2π|ξ|y). (7)
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We want to prove
U(x , y) = (Ps(·, y) ? u)(x).

Taking inverse Fourier transform and using (7), we have to show that

F−1ξ→x

(
(2π|ξ|)s
2s−1Γ(s)

y sKs(2π|ξ|y)
)
=

Γ(n/2 + s)

πn/2Γ(s)
y2s

(y2 + |x |2)(n+2s)/2
.

Since the function in the left hand-side of (33) is spherically symmetric, proving
(33) is equivalent to establishing the follow identity

Fξ→x (2πs |ξ|sy sKs(2π|ξ|y)) = Γ(n/2 + s)

πn/2
y2s

(y2 + |x |2)(n+2s)/2
.

(Hankel transform : H ≡ H−1 for radial functions.)
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Theorem 2 (Fourier-Bessel Representation)

Let u(x) = f (|x |), and suppose that

t 7→ tn/2f (t)Jn/2−1(2π|ξ|t) ∈ L1(Rn).

Then,

û(ξ) = 2π|ξ|−n/2+1
ˆ ∞

0
tn/2f (t)Jn/2−1(2π|ξ|t) dt.

Then, the latter identity (33) is equivalent to

22πs+1y s

|x |n/2−1

ˆ ∞

0
tn/2+sKs(2πyt)Jn/2−1(2π|ξ|t) dt

=
Γ(n/2 + s)

πn/2Γ(s)
y2s

(y2 + |x |2)(n+2s)/2
.
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Let’s establish

(−∆)su(x) = −22s−1Γ(s)
Γ(1− s)

ĺım
y→0+

y1−2s∂yU(x , y).

Recall that ̂(−∆)su(ξ) = (2π|ξ|)2s û(ξ). Using the equalities

K
′
s(z) =

s

z
Ks(z)−Ks+1(z)

and
2s

z
Ks(z)−Ks+1(z) = −Ks−1(z) = −K1−s(z),

we obtain

y1−2s∂y Û(ξ, y) =
(2π|ξ|)s+1û(ξ)

22s−1Γ(s)
y1−sK1−s(2π|ξ|y).
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As before, we have

ĺım
y→0+

y1−sK1−s(2π|ξ|y) = 2−sΓ(1− s)(2π|ξ|)s−1.

We finally reach the conclusion

ĺım
y→0+

y1−2s∂y Û(ξ, y) = − Γ(1− s)

22s−1Γ(s)
(2π|ξ|)2s û(ξ).

�

Remark 1 (Alternative proof of (4))

Using that ˆ
Rn

Ps(x , y) dx = 1, y > 0,

we will show another proof.
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Let u ∈ S(Rn) and consider the solution U(x , y) = (Ps(·, y) ? u)(x) to the
extension problem (1). We can write

U(x , y) =
Γ(n/2 + s)

πn/2Γ(s)

ˆ
Rn

u(z)− u(x)

(y2 + |z − x |2)(n+2s)/2
dz + u(x).

Differentiating both sides respect to y we obtain

y1−2s∂yU(x , y) = 2s
Γ(n/2 + s)

πn/2Γ(s)

ˆ
Rn

u(z)− u(x)

(y2 + |z − x |2)(n+2s)/2
dz +O(y2).
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Now, letting y → 0+ and using the Lebesgue dominated convergence theorem, we
thus find

ĺım
y→0+

y1−2s∂yU(x , y) = 2s
Γ(n/2 + s)

πn/2Γ(s)
P.V.

ˆ
Rn

u(z)− u(x)

(|z − x |2)(n+2s)/2
dz

= −2s
Γ(n/2 + s)

πn/2Γ(s)
γ(n, s)−1(−∆)su(x).

Finally, recall that

γ(n, s) =
s22sΓ(n/2 + s)

πn/2Γ(1− s)
.

�
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Thanks for your attention
Eskerrik asko zuen arretarengatik
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